• Title/Summary/Keyword: Fuzzy Set-Fuzzy Systems

Search Result 667, Processing Time 0.029 seconds

Operations on Generalized Intuitionistic Fuzzy Soft Sets

  • Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.184-189
    • /
    • 2011
  • Generalized intuitionistic fuzzy soft set theory, proposed by Park et al. [Journal of Korean Institute of Intelligent Systems 21(3) (2011) 389-394], has been regarded as an effective mathematical tool to deal with uncertainties. In this paper, we prove that certain De Margan's law hold in generalized intuitionistic fuzzy soft set theory with respect to union and intersection operations on generalized intuitionistic fuzzy soft sets. We discuss the basic properties of operations on generalized intuitionistic fuzzy soft sets such as necessity and possibility. Moreover, we illustrate their interconnections between each other.

Group Decision Making Using Intuitionistic Hesitant Fuzzy Sets

  • Beg, Ismat;Rashid, Tabasam
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.181-187
    • /
    • 2014
  • Dealing with uncertainty is always a challenging problem. Intuitionistic fuzzy sets was presented to manage situations in which experts have some membership and non-membership value to assess an alternative. Hesitant fuzzy sets was used to handle such situations in which experts hesitate between several possible membership values to assess an alternative. In this paper, the concept of intuitionistic hesitant fuzzy set is introduced to provide computational basis to manage the situations in which experts assess an alternative in possible membership values and non-membership values. Distance measure is defined between any two intuitionistic hesitant fuzzy elements. Fuzzy technique for order preference by similarity to ideal solution is developed for intuitionistic hesitant fuzzy set to solve multi-criteria decision making problem in group decision environment. An example is given to illustrate this technique.

The existence of the fuzzy solutions for the differential system with fuzzy coefficient (퍼지 계수를 갖는 미분 시스템에 대한 퍼지 해의 존재성)

  • K.D. Son;J.R. Kang;Lee, B.Y.;Park, Y.B
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.353-356
    • /
    • 2001
  • In this paper, we study the existence of fuzzy solution for the following differential system with fuzzy coefficient using the different two methods: (equation omitted), where a, b is the fuzzy natural number generated by fuzzy number l . The a-level set of the fuzzy number (equation omitted). The -level set of a is (equation omitted) and -level set of b is (equation omitted).

  • PDF

FMMN-based Neuro-Fuzzy Classifier and Its Application (FMMN 기반 뉴로-퍼지 분류기와 응용)

  • 곽근창;전명근;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.259-262
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian menbership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

The development of fuzzy reasoning tool for the support design of servo system (서보 제어계 설계지원을 위한 퍼지추론 TOOL의 개발)

  • 노창주;홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.72-78
    • /
    • 1995
  • The diffusion of fuzzy logic techniques into real applications requires specific software supports which save development time and reduce the programming effort. But we has been lack of a tool devoted to support the design of fuzzy controllers. In this paper, on the basis of the general fuzzy set and .alpha.-cut set decomposition of fuzzy sets, a set of fuzzy reasoning tool(FRT) devoted to support the design of fuzzy dontroller for servo systems is developed. The major features of this tool are: 1) It supports users to analyze fuzzy ingerence status based on input deta and expected results by three-D graphic display. 2) It supports users to prepare input data and expected result. 3) It supports users to tuned scaling factor of membership functions, rules and fuzzy inference. The paper shows how the suggested design tools are suitable to give a consistent answer to the tuning of fuzzy control system. This FRT is expected to exert good performance and devoted to support which the design of fuzzy controller is illustrated in the servo systems.

  • PDF

Optimization of Fuzzy Set-based Fuzzy Inference Systems Based on Evolutionary Data Granulation (진화론적 데이터 입자에 기반한 퍼지 집합 기반 퍼지 추론 시스템의 최적화)

  • Park, Keon-Jun;Lee, Bong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.343-345
    • /
    • 2004
  • We propose a new category of fuzzy set-based fuzzy inference systems based on data granulation related to fuzzy space division for each variables. Data granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

A Ranking Method for Type-2 Fuzzy Values (타입-2 퍼지값의 순위결정)

  • Lee, Seung-Soo;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.341-346
    • /
    • 2002
  • Type-1 fuzzy set is used to show the uncertainty in a given value. But there are many situations where it needs to be extended to type-2 fuzzy set because it can be also difficult to determine the crisp membership function itself. Type-2 fuzzy systems have the advantage that they are more expressive and powerful than type-1 fuzzy systems, but they require many operations defined for type-1 fuzzy sets need to be extended in the domain of type-2 fuzzy sets. In this paper, comparison and ranking methods for type-2 fuzzy sets are proposed. It is based on the satisfaction function that produces the comparison results considering the actual values of the given type-2 fuzzy sets with their possibilities. Some properties of the proposed method are also analyzed.

A Note on Interval-Valued Fuzzy Soft Sets (Interval-Valued Fuzzy Soft sets 관한 연구)

  • Min, Won-Keun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.412-415
    • /
    • 2008
  • In this paper, we show that the concepts of null interval-valued fuzzy and absolute interval-valued fuzzy soft sets are not reasonable. Thus we introduce the modified concepts for them and study some properties. Also we introduce an operation for the interval-valued fuzzy soft set theory and study basic properties.

Genetically Optimized Hybrid Fuzzy Set-based Polynomial Neural Networks with Polynomial and Fuzzy Polynomial Neurons

  • Oh Sung-Kwun;Roh Seok-Beom;Park Keon-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.327-332
    • /
    • 2005
  • We investigatea new fuzzy-neural networks-Hybrid Fuzzy set based polynomial Neural Networks (HFSPNN). These networks consist of genetically optimized multi-layer with two kinds of heterogeneous neurons thatare fuzzy set based polynomial neurons (FSPNs) and polynomial neurons (PNs). We have developed a comprehensive design methodology to determine the optimal structure of networks dynamically. The augmented genetically optimized HFSPNN (namely gHFSPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of gHFSPNN leads to the selection leads to the selection of preferred nodes (FSPNs or PNs) available within the HFSPNN. In the sequel, the structural optimization is realized via GAs, whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFSPNN is quantified through experimentation where we use a number of modeling benchmarks synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

Evolutionary Design Methodology of Fuzzy Set-based Polynomial Neural Networks with the Information Granule

  • Roh Seok-Beom;Ahn Tae-Chon;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.301-304
    • /
    • 2005
  • In this paper, we propose a new fuzzy set-based polynomial neuron (FSPN) involving the information granule, and new fuzzy-neural networks - Fuzzy Set based Polynomial Neural Networks (FSPNN). We have developed a design methodology (genetic optimization using Genetic Algorithms) to find the optimal structure for fuzzy-neural networks that expanded from Group Method of Data Handling (GMDH). It is the number of input variables, the order of the polynomial, the number of membership functions, and a collection of the specific subset of input variables that are the parameters of FSPNN fixed by aid of genetic optimization that has search capability to find the optimal solution on the solution space. We have been interested in the architecture of fuzzy rules that mimic the real world, namely sub-model (node) composing the fuzzy-neural networks. We adopt fuzzy set-based fuzzy rules as substitute for fuzzy relation-based fuzzy rules and apply the concept of Information Granulation to the proposed fuzzy set-based rules.

  • PDF