• Title/Summary/Keyword: Fuzzy Sensor

Search Result 534, Processing Time 0.03 seconds

Target Tracking Control of vision sensor using Fuzzy Algorithm (퍼지 알고리즘을 이용한 비젼 센서의 목표물 추적 제어)

  • Lee, Hong-Hee;Han, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.583-586
    • /
    • 1995
  • In this paper, a nor fuzzy control algorithm for the target tracking system is proposed, and its characteristics are analyzed and compared with those of the traditional PID controller. Fuzzy rules are generated experimentally using Mamdani's minimum operation and the center of area method. The experimental results prove that the proposed fuzzy algorithm is excellent in our tracking system and its performance is superior to that of the PID controller.

  • PDF

NAVIGATION ALGORITHM FOR AUTONOMOUS MOBILE ROBOT USING Fuzzy CONTROLLER (퍼지제어기를 이용한 이동로봇의 주행알고리즘 개발)

  • Park, Ki-Doo;Jeong, Heon;Kim, Young-Dong;Choi, Han-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.403-405
    • /
    • 1997
  • In this paper, a navigation system based on fuzzy logic controllers is developed for a mobile robot in an unknown environment. The structure of this fuzzy navigation system features sensor system, fuzzy controllers for motion planning and the motion control system for real-time execution.

  • PDF

Development of Intelligently Unmanned Combine Using Fuzzy Logic Control -(Graphic Simulation)-

  • N.H.Ki;Cho, S.I.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1264-1272
    • /
    • 1993
  • The software for unmanned control of three row typed rice combine has been developed using fuzzy logic. Three fuzzy variables were used : operating status of combine, steering, and speed. Eleven fuzzy rules were constructed and the eleven linguistic variables were used for the fuzzy rules. Six sensors were use of to get input values and sensor input values were quantified into 11 levels. The fuzzy output was infered with fuzzy inferrence which uses the correlation product encoding , and it must have been defuzzified by the method of center of gravity to use it for the control. The result of performance test using graphic simulation showed that the intelligently unmanned control of a rice combine was possible using fuzzy logic control.

  • PDF

Fuzzy Controller Development for Efficiency Improvement of Photovoltaic Tracking System using Sensor (센서방식 태양광 추적 시스템의 효율 향상을 위한 퍼지제어기 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Jung, Byung-Jin;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.217-218
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in order to increase an output of the PV array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Speed Control of AC Servo Motor Using Adaptive Fuzzy-Sliding Observer (적응 퍼지-슬라이딩 관측기를 이용한 교류 서보 전동기 속도제어)

  • Kim, Sang-Hoon;Yoon, Kwang-Ho;Ko, Bong-Woon;Kim, Won-Tae;Kim, Gi-Nam;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.726-728
    • /
    • 2004
  • In this paper, the gain of the observer is properly set up using the fuzzy control and Fuzzy-Sliding observer(FSQ) that have a superior transient characteristic and is easy to implement compared to the existing method is designed. It estimate the differentiation of the armature current directly using the armature current measured in the AC motor. It estimate the speed of the rotor using the differentiation. It is proposed speed sensorless control method using the estimated speed. Optimal gain of speed observer(Luenberger observer) was set up using the fuzzy control and adapted speed control of AC servo motor. To verify the performance of designed Fuzzy-Sliding observer, simulation compared with fixed speed observer gain of G.B Wang and S.S Peng's sliding observer is performed. Also, it was proved the excellence and feasibility of the proposed observer from the comparison test with a speed sensor and without a speed sensor which used a highly efficient drive and 400W AC servo motor starting system.

  • PDF

Reliable Navigation of a Mobile Robot in Cluttered Environment by Combining Evidential Theory and Fuzzy Controller (추론 이론과 퍼지 컨트롤러 결합에 의한 이동 로봇의 자유로운 주변 환경 인식)

  • 김영철;조성배;오상록
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.136-139
    • /
    • 2001
  • This paper develops a sensor based navigation method that utilizes fuzzy logic and the Dempster-Shafer evidence theory for mobile robot in uncertain environment. The proposed navigator consists of two behaviors: obstacle avoidance and goal seeking. To navigate reliably in the environment, we make a map building process before the robot finds a goal position and create a robust fuzzy controller. In this paper, the map is constructed on a two-dimensional occupancy grid. The sensor readings are fused into the map using D-S inference rule. Whenever the robot moves, it catches new information about the environment and replaces the old map with new one. With that process the robot can go wandering and finding the goal position. The usefulness of the proposed method is verified by a series of simulations. This paper deals with the fuzzy modeling for the complex and uncertain nonlinear systems, in which conventional and mathematical models may fail to give satisfactory results. Finally, we provide numerical examples to evaluate the feasibility and generality of the proposed method in this paper.

  • PDF

Interleaved Hop-by-Hop Authentication in Wireless Sensor Network Using Fuzzy Logic to Defend against Denial of Service Attack (인터리브드 멀티홉 인증을 적용한 무선 센서네트워크에서 퍼지로직을 이용한 서비스 거부 공격에 대한 방어 기법)

  • Kim, Jong-Hyun;Cho, Tac-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • When sensor networks are deployed in open environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False report attack can lead to not only false alarms but also the depletion of limited energy resources in battery powered networks. The Interleaved hop-by-hop authentication (IHA) scheme detects such false reports through interleaved authentication. In IHA, when a report is forwarded to the base station, all nodes on the path must spend energies on receiving, authenticating, and transmitting it. An dversary can spend energies in nodes by using the methods as a relaying attack which uses macro. The Adversary aim to drain the finite amount of energies in sensor nodes without sending false reports to BS, the result paralyzing sensor network. In this paper, we propose a countermeasure using fuzzy logic from the Denial of Service(DoS) attack and show an efficiency of energy through the simulataion result.

Fuzzy system and Improved APIT (FIAPIT) combined range-free localization method for WSN

  • Li, Xiaofeng;Chen, Liangfeng;Wang, Jianping;Chu, Zhong;Li, Qiyue;Sun, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2414-2434
    • /
    • 2015
  • Among numerous localization schemes proposed specifically for Wireless Sensor Network (WSN), the range-free localization algorithms based on the received signal strength indication (RSSI) have attracted considerable research interest for their simplicity and low cost. As a typical range-free algorithm, Approximate Point In Triangulation test (APIT) suffers from significant estimation errors due to its theoretical defects and RSSI inaccuracy. To address these problems, a novel localization method called FIAPIT, which is a combination of an improved APIT (IAPIT) and a fuzzy logic system, is proposed. The proposed IAPIT addresses the theoretical defects of APIT in near (it's defined as a point adjacent to a sensor is closer to three vertexes of a triangle area where the sensor resides simultaneously) and far (the opposite case of the near case) cases partly. To compensate for negative effects of RSSI inaccuracy, a fuzzy system, whose logic inference is based on IAPIT, is applied. Finally, the sensor's coordinates are estimated as the weighted average of centers of gravity (COGs) of triangles' intersection areas. Each COG has a different weight inferred by FIAPIT. Numerical simulations were performed to compare four algorithms with varying system parameters. The results show that IAPIT corrects the defects of APIT when adjacent nodes are enough, and FIAPIT is better than others when RSSI is inaccuracy.

The Development of New dynamic WRR Algorithm for Wireless Sensor Networks (무선 센서망을 위한 새로운 동적 가중치 할당 알고리즘 개발)

  • Cho, Hae-Seong;Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.293-298
    • /
    • 2010
  • The key of USN(Ubiquitous Sensor Network) technology is low power wireless communication technology and proper resource allocation technology for efficient routing. The distinguished resource allocation method is needed for efficient routing in sensor network. To solve this problems, we propose an algorithm that can be adopted in USN with making up for weak points of PQ and WRR in this paper. The proposed algorithm produces the control discipline by the fuzzy theory to dynamically assign the weight of WRR scheduler with checking the Queue status of each class in sensor network. From simulation results, the proposed algorithm improves the packet loss rate of the EF class traffic to 6.5% by comparison with WRR scheduling method and that of the AF4 class traffic to 45% by comparison with PQ scheduling method.