최근 사이버 범죄의 증가와 그 대상 시스템의 다양화로 인하여 디지털 포렌식의 중요성이 커지고 있다. 일부 시스템들은 전원이나 네트워크를 차단하지 않고 수사하는 live forensic의 방법을 채택하고 있는데, 인터넷 사용이 일반화됨에 따라 live forensic 방법이 채택되는 횟수가 증가하고 있다. 그러나 live forensic 기술이 상당한 발전을 거듭하였음에도 불구하고 원격으로 접근하여 행해지는 Anti-forensic 행위에는 여전히 취약한 실정이다. 이와 같은 문제를 해결하기 위하여 첫 번째로 우리는 Anti-forensic 행위를 5개의 계층으로 분류하고 각 계층별로 가능한 Anti-forensic 행위의 시나리오를 생성하는 방법을 제안하였다. 두 번째로 fuzzy 전문가 시스템을 제안하여 효과적으로 Anti-forensic 행위를 탐지할 수 있도록 하였다. 몇몇 Anti-forensic 행위에 사용되는 명령어들은 일반적인 시스템 관리를 위하여 사용되는 명령어와 매우 유사하다. 따라서 우리는 fuzzy logic을 사용하여 모호한 데이터를 다룰 수 있도록 하였다. 미리 정의된 시나리오에서 명령어와 옵션 및 인자 값을 이용하여 룰을 생성하고 fuzzy 전문가 시스템에 이 룰을 학습하도록 하여 유사한 행위가 탐지되었을 때 추론을 통하여 수사관에게 얼마나 위험한 행위인지 알려준다. 이 시스템은 live forensic 수사가 진행될 때 발생할 수 있는 Anti-forensic 행위를 실시간으로 탐지할 수 있도록 하여 증거 데이터의 무결성을 유지하도록 한다.
A fuzzy controller is designed for compensating the cross-coupling effect of induced roll due to the dynamic characteristics of three fin torpedo. Since the utilization of fuzzy-coprocessor has many interfacing problems with typical microprocessors of the guidance and control unit, the simplified fuzzy inference method based on nonfuzzy-processor is proposed to implement fuzzy controllers of three fin torpedo. This method provides a flexible rule-base design to guarantee the robust control. The good potential of the proposed design is shown through real-time simulations using both a mathematical model on AD-100 computer and an implemented controller on Intel 80C186/80C 187 microprocessors employing 12bit A/D converter.
In this paper, a general neural-network-based connectionist model, called Fuzzy Neural Network(FNN), is proposed for the realization of a fuzzy logic control system. The proposed FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities. Such FNN can be constructed from training examples by learning rule, and the connectionist structure can be trained to develop fuzzy logic rules and find optimal input/output membership functions. Computer simulation examples will be presented to illustrate the performance and applicability of the proposed FNN, and their associated learning algorithms.
본 논문에서는 자연언어를 이용하는 인간의 학습방법에 기초한 LIBL방법의 실용화를 위하여 음성지시기반학습(VIBL : Voice Instruction Based Learing)을 선박의 조타 시스템, 주기원격제어시스템(MERCS), 윈치기기에 적용하여 항해사의 조타명령과 같은 언어적 지시가 조타수를 경유하여 수행되는 과정을 대체하는 VIBL법을 이용한 조타기, 주기 원격 조종장치, 윈치 기기를 제어하는 시스템을 제안하고자 한다. 구체적인 연구방법으로는 조타수의 적절한 조타조작모델을 퍼지추론 규칙을 이용하여 구현하고, 적절한 의미소 및 평가규칙을 제시한 언어지시 기반 학습방법을 선박의 조타시스템에 적용하여 지시자의 음성언어지시에 보다 효율적으로 응답하는 지능형 조타기 제어 시스템을 구현하고, 지시자의 음성지시를 인식하여 주기 원격 조종 장치와 윈치 기기를 제어하는 시스템을 구현한다. 음성언어지시를 인식하여 텍스트로 변환하기 위한 기법과 퍼지추론을 이용하여 조타수의 경험을 바탕으로 한 조타 조작 모델을 구축하였고, 지능형 조타 시스템을 위한 타각, 방위도달시간, 정상상태의 의미소를 제안하여, 조타수 조작 모델 규칙을 수정하기 위한 평가규칙을 제시하였다. 또한, 구현된 음성인식 선박조종 시뮬레이터에 적용하여 그 유효성을 확인하였다.
This paper deals with the method to estimate the friction in a system. We study a nonlinear friction model to estimate the friction in an inverted pendulum and approximate the friction model using fuzzy basis functions expansion. To demonstrate the friction observer using FBFs, we derive a update rule based on the error term that is formed by the output from a real system and observer output with a friction estimate. And two compensation algorithms to improve the response of an inverted pendulum are proposed. The first method that a observer parameter is updated in on-line and the friction is compensated at the same time. The second method is to compensate the friction with observer parameter estimated priori. The two methods is compared through the experimental results.
This paper proposes a GA and GDM-based method for removing unnecessary rules and generating relevant rules from the fuzzy rules corresponding to several fuzzy partitions. The aim of proposed method is to find a minimum set of fuzzy rules that can correctly classify all the training patterns. When the fine fuzzy partition is used with conventional methods, the number of fuzzy rules has been enormous and the performance of fuzzy inference system became low. This paper presents the application of GA as a means of finding optimal solutions over fuzzy partitions. In each rule, the antecedent part is made up the membership functions of a fuzzy set, and the consequent part is made up of a real number. The membership functions and the number of fuzzy inference rules are tuned by means of the GA, while the real numbers in the consequent parts of the rules are tuned by means of the gradient descent method. It is shown that the proposed method has improved than the performance of conventional method in formulating and solving a combinatorial optimization problem that has two objectives: to maximize the number of correctly classified patterns and to minimize the number of fuzzy rules.
The conventional quantitative techniques of system analysis are intrinsically unsuited for dealing with humanistic systems. Therefore, the rule based modeling of fuzzy linguistic type has been developed for the analysis of humanistic systems and complex systems and it is very significant for analysis and design of fuzzy logic controller. The activated sludge process is a commonly used method for treating sewage and waste waters. A mathematical tool to build a fuzzy model of the activated sludge process where fuzzy implications and linear reasoning are used is presented in here. A root-mean square error is used as the criterion of the fuzzy model's adequacy to the A.S.P. and the least square method is used for the identification of optimum consequence parameters. A method of modeling of the activated sludge process using its input-output data and simulation results for its application are shown.
This paper presents a systematic method to compute a reliability measure for a short term electrical load forecasting system using neuro-fuzzy models. It has been realized that the reliability computation is essential for a load forecasting system to be applied practically. The proposed method employs a local reliability measure in order to exploit the local representation characteristic of the neuro-fuzzy models. It, hence, estimates the reliability of each fuzzy rule learned. The design procedure of the proposed short term load forecasting system is as follows: (1) construct initial structures of neuro-fuzzy models, (2) store them in the initial structure bank, (3) train the neuro-fuzzy model using an appropriate initial structure, and (4) compute load prediction and its reliability. In order to demonstrate the viability of the proposed method, we develop an one hour ahead load forecasting system by using the real load data collected during 1996 and 1997 at KEPCO. Simulation results suggest that the proposed scheme extends the applicability of the load forecasting system with the reliably computed reliability measure.
This paper is proposed adaptive fuzzy-neural network controller(NFC) for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on NFC that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive NFC is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.
다중 에이전트 시스템에 대한 연구는 최근 다양한 분야에서 활성화 되고 있으며, 복잡한 시스템의 제어 및 최적화에 관한 연구가 진행되어 왔다. 본 논문에서는 게임 환경에서의 NPC(Non-Player Character) 시뮬레이션을 위한 다중 에이전트 시스템을 개발한다. 시스템 개발의 목적은 동적 이산사건 영역의 상황을 추론하여 신속하고 정확한 판단을 제공하고 에이전트 시스템의 최적화 과정을 보다 손쉽게 도와주는데 있다. 이를 위한 에이전트 시스템의 기본 모델은 페트리넷을 활용하여 구조를 단순화 하고 퍼지 추론엔진을 사용하여 다양한 상황을 결정할 수 있도록 하였다. 본 연구 시스템의 실험은 NPC간의 가상 전장 상황을 묘사하며, 퍼지 규칙이 적용된 에이전트와 유한 상태 기계로 구현된 NPC를 시뮬레이션 하여 에이전트의 승률과 생존율을 산출하였다. 실험 결과 퍼지 규칙 기반 에이전트의 승률과 생존율이 유한 상태 기계로 구현된 NPC보다 더 높은 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.