• Title/Summary/Keyword: Fuzzy Rule-base

Search Result 220, Processing Time 0.025 seconds

Inconsistency in Fuzzy Rulebase: Measure and Optimization

  • Shounak Roychowdhury;Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.75-80
    • /
    • 2001
  • Rule inconsistency is an important issue that is needed to be addressed while designing efficient and optimal fuzzy rule bases. Automatic generation of fuzzy rules from data sets, using machine learning techniques, can generate a significant number of redundant and inconsistent rules. In this study we have shown that it is possible to provide a systematic approach to understand the fuzzy rule inconsistency problem by using the proposed measure called the Commonality measure. Apart from introducing this measure, this paper describes an algorithm to optimize a fuzzy rule base using it. The optimization procedure performs elimination of redundant and/or inconsistent fuzzy rules from a rule base.

  • PDF

An Auto Fuzzy Rule-base Extraction Method using Genetic Algorithm (유전자 알고리즘을 이용한 자동 퍼지규칙 추출 방식)

  • 박진성;손동설;임중규;정경권;이현관
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.1003-1006
    • /
    • 2003
  • This paper proposed An auto fuzzy rule-base extraction method using genetic algorithm. The suggested method is an auto fuzzy rule-base extration method neither expert advise fuzzy rule-base nor trial and error fuzzy rule-base. In order to confirm the validity of proposed method, we have applicated dc motor control and confirmed effective.

  • PDF

The Study on Inconsistent Rule Based Fuzzy Logic Control using Neural Network

  • Cho, Jae-Soo;Park, Dong-Jo;Z. Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.145-150
    • /
    • 1997
  • In this paper is studied a method of fuzzy logic control based on possibly inconsistent if-then rules representing uncertain knowledge or imprecise data. In most cases of practical applications adopting fuzzy if-then rule bases, inconsistent rules have been considered as ill-defined rules and, thus, not allowed to be in the same rule base. Note, however, that, in representing uncertain knowledge by using fuzzy if-then rules, the knowledge sometimes can not be represented in literally consistent if-then rules. In this regard, when it is hard to obtain consistent rule base, we propose the weighted rule base fuzzy logic control depending on output performance using neural network and we will derive the weight update algorithm. Computer simulations show the proposed method has good performance to deal with the inconsistent rule base fuzzy logic control. And we discuss the real application problems.

  • PDF

Evolutionary Design of Fuzzy Rule Base for Modeling and Control (비선형 시스템 모델링 및 제어를 위한 퍼지 규칙기반의 진화 설계)

  • Lee, Chang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.12
    • /
    • pp.566-574
    • /
    • 2001
  • In designing fuzzy models and controllers, we encounter a major difficulty in the identification f an optimized fuzzy rule base, which is traditionally achieved by a tedious trial-and-error process. This paper presents an approach to the evolutionary design of an optimal fuzzy rule base for modeling and control. Evolutionary programming is used to simultaneously evolve the structure and the parameter of fuzzy rule base for a given task. To check the effectiveness of the suggested approach, four numerical examples are examined. The performance of the identified fuzzy rule bases is demonstrated.

  • PDF

Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism (하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출)

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

Application of Fuzzy Algorithm with Learning Function to Nuclear Power Plant Steam Generator Level Control

  • Park, Gee-Yong-;Seong, Poong-Hyun;Lee, Jae-Young-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1054-1057
    • /
    • 1993
  • A direct method of fuzzy inference and a fuzzy algorithm with learning function are applied to the steam generator level control of nuclear power plant. The fuzzy controller by use of direct inference can control the steam generator in the entire range of power level. There is a little long response time of fuzzy direct inference controller at low power level. The rule base of fuzzy controller with learning function is divided into two parts. One part of the rule base is provided to level control of steam generator at low power level (0%∼30% of full power). Response time of steam generator level control at low power level with this rule base is shown generator level control at low power level with this rule base is shown to be shorter than that of fuzzy controller with direct inference.

  • PDF

Design and Analysis of Fuzzy PID Controller for Control of Nonlinear System (비선형 시스템 제어를 위한 퍼지 PID 제어기의 설계 및 해석)

  • Lee, Chul-Heui;Kim, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.155-162
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance, FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and to increase efficiency. a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy PI and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and the resultant rule base is Macvicar-Whelan type. And the membership function is a Gaussian function. The frequency response information is used in tuning of the membership functions. Also a tuning strategy for the scaling factors is proposed based on the relationship between PID gain and the scaling factors. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks (연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구)

  • Kim Jin Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

Design and Analysis of Fuzzy PID Control for Nonlinear System (비선형 시스템을 위한 퍼지 PID 제어기의 설계 및 해석)

  • Kim, Sung-Ho;Lee, Cheul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.650-652
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance. FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and increase efficiency, a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy Pi and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and them. The resultant rule base is Macvicar-Whelan type. The frequency response information is used in tuning of membership functions. Also a tuning strategy for the scaling factors is Proposed based on the relationship between PID gain and them. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

Design of Fuzzy Controller with dual control rules using $e-{\Delta}e$ phase plane ($e-{\Delta}e$ 위상평면을 이용한 이중 제어규칙을 갖는 퍼지 제어기 설계)

  • 박광묵;신위재
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1149-1152
    • /
    • 1999
  • In this paper we analyzed each region of specific points and e-Δephase plane in order to make fuzzy rule base. After we composed the fuzzy control rules which can decrease rise time, delay time, maximum overshoot than basic fuzzy control rules. The composed method are converged more rapidly than single rule base in convergence region. Proposed method is alternately use at specific points of e-Δephase plane with two fuzzy control rules, that is one control rule occruing the steady state error used in transient region and another fuzzy control rule use to decrease the steady state error and rapidly converge at the convergence region. Two fuzzy control rules in the e-Δe phase plane decide the change time according to response characteristics of plants. As the results of simulation through the second order plant and the delay time plan, Proposed dual fuzzy control rules get the good response compare with the basic fuzzy control rule.

  • PDF