• Title/Summary/Keyword: Fuzzy Rule-Based Controller

Search Result 144, Processing Time 0.031 seconds

Auto-Generation of Fuzzy Rule Base Using Genetic Algorithm (유전 알고리즘을 이용한 퍼지 규칙 베이스의 자동생성)

  • 박세희;김용호;심귀보;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.2
    • /
    • pp.60-68
    • /
    • 1992
  • Fuzzy logic rule based controller has many desirable advantages, whih are simple to implement on the real time and need not the information of structure and dynamic characteristics of the system. Thus, nowadays, the scope of the application of the fuzzy logic controller becomes enlarged. But, if the controlled plant is a time-varying/nonlinear system, it is not easy to construct the fuzzy logic rules which need the knowledge of and expert. In this paper, an approach by which the logic control rules can be auto-generated using the genetic algorithm that is known to be very effective in the optimization problem will be proposed and the effectiveness of the proposed approach will be verified by computer simulation of the 2 d.o.f. planner robot.

  • PDF

Self-Organization of Fuzzy Rule Base Using Genetic Algorithm

  • Park, Sae-Hie;Kim, Yong-Ho;Choi, Young-Keel;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.881-886
    • /
    • 1993
  • Fuzzy logic rule-based controller has many desirable advantages, which are simple to implement on the real time and need not the information of structure and dynamic characteristics of the system. Thus, nowadays, the scope of the application of the fuzzy logic controller becomes enlarged. But, if the controlled plant is a time-varying and nonlinear system, it is not easy to construct the fuzzy logic rules which usually need the knowledge of an expert. In this paper, an approach in which the logic control rules can be self-organized using genetic algorithm will be proposed and the effectiveness of the proposed method will be verified by computer simulation of the 2 d.o.f. planar robot manipulator.

  • PDF

Switching rules based on fuzzy energy regions for a switching control of underactuated robot systems

  • Ichida, Keisuke;Izumi, Kiyotaka;Watanabe, Keigo;Uchida, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1949-1954
    • /
    • 2005
  • One of control methods for underactuated manipulators is known as a switching control which selects a partially-stable controller using a prespecified switching rule. A switching computed torque control with a fuzzy energy region method was proposed. In this approach, some partly stable controllers are designed by the computed torque method, and a switching rule is based on fuzzy energy regions. Design parameters related to boundary curves of fuzzy energy regions are optimized offline by a genetic algorithm (GA). In this paper, we discuss on parameters obtained by GA. The effectiveness of the switching fuzzy energy method is demonstrated with some simulations.

  • PDF

High Performance of Induction Motor Drive with HAI Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Design of Adaptive FNN Controller for Speed Contort of IPMSM Drive (IPMSM 드라이브의 속도제어를 위한 적응 FNN제어기의 설계)

  • 이정철;이홍균;정동화
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.39-46
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for the speed control of interior permanent magnet synchronous motor(IPMSM) drive. The design of this algorithm based on FNN controller that is implemented by using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights among the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strongly high performance and robustness in parameter variation, steady-state accuracy and transient response.

Mobile Robot Navigation using Optimized Fuzzy Controller by Genetic Algorithm

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.12-19
    • /
    • 2015
  • In order to guide the robots move along a collision-free path efficiently and reach the goal position quickly in the unknown multi-obstacle environment, this paper presented the navigation problem of a wheel mobile robot based on proximity sensors by fuzzy logic controller. Then a genetic algorithm was applied to optimize the membership function of input and output variables and the rule base of the fuzzy controller. Here the environment is unknown for the robot and contains various types of obstacles. The robot should detect the surrounding information by its own sensors only. For the special condition of path deadlock problem, a wall following method named angle compensation method was also developed here. The simulation results showed a good performance for navigation problem of mobile robots.

Design of a Container Crane Controller Using the Fuzzy Control Technique (퍼지제어 기법을 이용한 컨테이너 크레인의 제어기 설계)

  • 소명옥;유희한;박재식;남택근;최재준;이병찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.759-766
    • /
    • 2003
  • The amount of container freight continuously has been increased. and the low efficiency of container crane causes jamming frequently in transportation and cargo handling at port. The conventional control techniques based on a mathematical model are not well suited for dealing with ill-defined and uncertain systems. Recently. Fuzzy control has been successfully applied to a wide variety of practical problems as robots. automatic train operation system. etc. In this paper. a fuzzy controller for container crane is proposed to accomplish a design of improved control system for minimizing the swing motion at destination. In this scheme a mathematical model for the system is obtained in state space form. Finally. to exhibit the tracking performance and robustness of the proposed controller. computer simulations were carried out with various references, parameter variations and disturbances.

MTPA Control of Induction Motor Drive using Fuzzy-Neural Networks Controller

  • Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1474-1477
    • /
    • 2005
  • This paper is proposed maximum torque per ampere of induction motor using fuzzy-neural networks controller. Operation of maximum torque per ampere is achieved when, at a given torque and speed, the slip frequency is adjusted to that so that the stator current amplitude is minimized. This paper introduces a induction motor drive system with fuzzy-neural networks controller. A neural network-based architecture is described for fuzzy logic control. The characteristic rule and their membership function of fuzzy system are represented as the processing nodes in the neural network structure. This paper is proposed the analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

GA-based Optimal Fuzzy Control of Semi-Active Magneto-Rheological Dampers for Seismic Performance Improvement of Adjacent Structures (인접구조물의 내진성능개선을 위한 준능동 MR감쇠기의 GA-최적퍼지제어)

  • Yun, Jung-Won;Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.69-79
    • /
    • 2011
  • This paper proposes a GA-based optimal fuzzy control technique for the vibration control of earthquakeexcited adjacent structures interconnected with semi-active magneto-rheological(MR) dampers. Rule-based fuzzy logic controllers are designed first by implementing heuristic knowledge and the genetic algorithm(GA) is then introduced to optimally tune the fuzzy controllers for enhancing the seismic performance of semi-active control system. For practical implementation, the fuzzy controller simply uses locally measured responses of the dampers involved and directly returns the input voltage to the magneto-rheological dampers in real time through the fuzzy inference mechanism. The local measurement based fuzzy controller provides optimal damping force in a decentralized manner so that it does not require a primary central controller unlike the conventional semi-active control techniques. As a result, it can avoid the unbridgeable discrepancy between the desired control force and the actual damper force that may occur in the conventional control approaches. The validity and effectiveness of the proposed control method are shown numerically on two 20-story earthquake-excited buildings interconnected with MR dampers.

A study on design of a fuzzy controller and a simulator for development of controller for reducing vibration in overhead crane (천정 크레인의 진동 저감을 위한 퍼지제어기 및 제어기 개발용 시뮬레이터 설계에 관한 연구)

  • Jeong, kyung-Chae;Hong, Jin-Cheol;Bae, Jin-Ho;Lee, Dal-Hae;Lee, Suck-Gyu;Lee, Hai-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.96-101
    • /
    • 1996
  • In this paper, a simulator is designed along with S/W package for crane controllers. Due to trolley's acceleration or deceleration, cranes inherently cause swing motion of the objects in transporting heavy objects. This swing not only deteriorates the crane handling safety but also increases the processing time. To overcome these drawbacks, the fuzzy rule-based simulator is developed with inhibitory swing at final action. The computer simulation shows that the swing at initial and final positions is removed fast with small position error. The proposed simulator can be used for handling object stabley and the study of effectiveness in unmanned operation of cranes.

  • PDF