Fuzzy theory provides an intelligence treatment model for judgement about information when it needs a solution or a decision making about vague problems. Therefore, fuzzy theory is used for appropriate evaluation and decision on obscure information as human's emotion in human factors, In previous study, fuzzy membership function is defined for judgement infOlmation as human's emotion then ultimate results are deducted through fuzzy inference model. This method uses general CWTent through literature review or max, min and average as representative statics value about considering variables. But, this method makes away with nonlinear's or inegular's factors of human sensibility. Accordingly, application of this method leads to considerable loss of information in the ultimate evaluation. For that reason, this method has a limitation in objective evaluation of human factors. So, this study focuses on development of fuzzy membership function, which evaluates human's emotion or feeling accurately and objectively. We used the regression analysis and reasoned a fuzzy membership function about the relation of the variables. Then we verified the adequacy with the reliability through the experiment after this.
본 논문에서는 의미적으로 접근되어 애매성이 있으며 구별하기 힘든 자료를 효과 적으로 관리하기 위한 방안의 하나로 퍼지 집합과 라프 집합을 통합한 퍼지-라프 집 합(Fuzzy-Rough Sets:FRS)을 이용, 관계 데이터베이스를 구성하고 구현하였다. 먼저 불완전한 정보를 데이터베이스로 구성, 표현하는 방법에 대하여 일반적 관계 데이터 베이스를 확장시킨 퍼지 데이터베이스와 라프 데이터베이스를 간략히 살펴본다. 그리 고 퍼지 집합과 라프 집합을 통합한 퍼지-라프 집합을 근거로 퍼지-라프(Fuzzy -Rough:FR)관계데이터베이스를 구성한 후, 펜티엄 컴퓨터(166Mhz)상에서 데이터베이 스 관리 시스템인 엑세스(access)와 비쥬얼베이직(visual)을 도구(tool)로 구현하고 분석 하였다. 본 논문에서는 퍼지 집합의 특성과 라프 집합의 특성을 가진 집합을 기 반으로 한 데이터베이스를 구성, 구현함으로서 데이터의 감소를 유도하였다.
정보 검색은 사용자가 필요로 하는 요구에 가장 적합한 정보를 검색할수 있어야 한다. 정보 검색에서 질의어가 문서에 대하여 어느 정도의 유사성을 가지고 존재하는냐를 기준으로 문서를 순서화 할 때, 실제 순서화된 문서들을 보면 질의어와는 다른 문서들이 순서화 되는 경우를 볼 수 있다. 따라서 본 논문에서는 확장 퍼지 개념 네트워크에 근거 문서 검색을 위한 순의 결정 방법을 제안한다. 확장 퍼지 개념 네트워크에는 개념들 사이에 4가지의 퍼지 관계가 있다. 퍼지 양의 조합, 퍼지 음의 조합, 퍼지 일반화, 및 퍼지 세분화등이 있다. 확장 퍼지 개념 네트워크는 관계 행렬과 관련 행렬로 모델화 하여, 유사도 측정을 하였다.
One of the main problems in evaluating complex objects, such as an ill-defined system, is how to treat ambiguous aspect of the evaluation. Due to the Complexity and ambiguity of the objects, many types of evaluation attributes should be identified based on the rational dsision. One of these attributes is an analytical hierarchy process (AHP). the weight of evaluation attribtes in AHP however comes from the probability measure based on the additivity. Therefore, it is notapplicable to the objects which have the property of non-additivity. In the previous studies by other researchers they intriduced the Hierarchical Fuzzy Integral method or mergd AHP and fuzzy measure for the analysis of the overlaps among the evaluation objects. But, they need more anlyses in terms of transformation of the probability measure into fuzzy measure which fits for the additivity and overlapping coefficient which affects to the fuzzy measure. Considering these matters, this paper deals that, ⅰ) clarifying the relation between the fuzzy and probability measure adopted in AHP, ii) calculating directly the family of fuzzy measure from the overlapping coefficient and probability measure. A simple algorithm for the calculation of fuzzy measures and set family of those from the above results is also proposed. Finally, the effectiveness of the algorithm developed by applying this to the problems for estimation of safety in ship berthing and for evaluation of ports in competition is verified. This implied that the new algoritnm gives better description of the system evaluation.
In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.
본 논문에서는 새로운 방법의 Fuzzy PID 제어기를 제안한다. 우선 절대형 디지털 PID 제어기에서 두 가지 문제점이 있다. 첫째는 매 제어 주기마다 많은 데이터의 합을 구해야 하므로 계산시간이 많이 소요되고, 둘째는 이 계산을 위해 이전의 모든 데이터를 보관하고 있어야 되기 때문에 메모리가 많이 필요한 문제점이 있다. 위의 문제점을 개선하기 위해 속도형 디지털 PID 제어기를 사용한다. 제안한 제어기에서는 PID 제어기의 목표 값과 현재 출력 값의 차인 크리스퍼(crisp) 출력 오차를 그대로 사용하지 않고 퍼지추론의 단계는 가지면서 Rule Table은 갖지 않는 특징이 있으며 출력 소속 함수에 두 변수의 관계와 범위에 의해 도식화된 영역에서 삼각형 무게 중심법으로 비퍼지화된 비선형 출력 값을 PID 계수에 인가하는 새로운 Fuzzy PID 제어기를 제안한다.
Communications for Statistical Applications and Methods
/
제15권4호
/
pp.517-530
/
2008
본 논문은 시간의 흐름에 따라 일정한 간격으로 관측된 시계열자료에 대한 통계적인 관계를 추정하기 위하여 삼각퍼지수를 이용한 퍼지시계열모형을 소개한다. 모든 관측치를 포함하는 전체집합을 분할하는 구간을 자료의 빈도수에 따라 결정하고 연속되는 두 시점에서 퍼지수가 일치하는 경우에는 관측된 자료의 차에 대한 정보를 이용하여 제안된 퍼지시계열모형을 추정한다. 예제를 이용하여 제안된 퍼지시계열모형의 정확성을 일반적인 시계열모형과 여러 가지 방법으로 추정된 퍼지시계열모형과 비교한다.
One important issue in power systems is dynamic instability due to loosing balance relation between electrical generation and a varying load demand that justifies the necessity of stabilization. Moreover, Power System Stabilizer (PSS) must have capability of producing appropriate stabilizing signals over a wide range of operating conditions and disturbances. To overcome these drawbacks, this paper proposes a new method for robust design of PSS by using an auto-tuning fuzzy control in combination with Real-Coded Genetic Algorithm (RCGA). This method includes two fuzzy controllers; internal fuzzy controller and supervisor fuzzy controller. The supervisor controller tunes the internal one by on-line applying of nonlinear scaling factors to inputs and outputs. The RCGA-based method is used for off-line training of this supervisor controller. The proposed PSS is tested in three operational conditions; nominal load, heavy load, and in the case of fault occurrence in transmission line. The simulation results are provided to compare the proposed PSS with conventional fuzzy PSS and conventional PSS. By evaluating the simulation results, it is shown that the performance and robustness of proposed PSS in different operating conditions is more acceptable
본 논문에서는 퍼지이론을 이용하여 색채공간의 사용자가 원하는 분위기에 해당하는 언어 입력에 따라 조화로운 색채공간을 설계해가는 의사결정 보조 시스템을 개발하였다. 개발된 시스템에서 형용사 이미지 스케일의 언어적인 입력이 주어지면 형용사와 색채와의 관계를 퍼지관계로 가정하고 색채공간의 전체적인 분위기에 맞는 색채가 선택되며 퍼지화된 Moon-Spencer등의 색채조화에 관한 지식은 어울리는 조화색 결정의 탐색 영역을 제한하는 역할을 담당하고 이에 따라 조화색이 결정된다.
In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.