• Title/Summary/Keyword: Fuzzy Neural Networks

검색결과 601건 처리시간 0.021초

A Design of the Fuzzy Neural Network Image Recognizer

  • Kim, Dae-Su
    • 한국지능시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.50-57
    • /
    • 1992
  • Neural networks have become more popular recently and are now being applied to numerous fiedls. One of the major applications of neural networks is image recognition. Various image recognition system have been proposed so far, but there is no definite solution yet. In this paper, we propose a design of Fuzzy Neural Network Image Recognizer(FNNIR). Our model uses a fuzzy neural network model, named SONN[KIM90]. This model returns the information of the number of clusters and cluster and cluster center values for a given image data ste. Unlike the well-kinwn backpropagation technique, we do not need retraining for new data. Our newly designed image recongitionsystem FNNIR that uses fuzzy merger is proposed and experimented for a sample color image.

  • PDF

퍼지신경망을 이용한 비선형 데이터 모델링에 관한 연구 (A study on nonlinear data-based modeling using fuzzy neural networks)

  • 권오국;장욱;주영훈;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.120-123
    • /
    • 1997
  • This paper presents models of fuzzy inference systems that can be built from a set of input-output training data pairs through hybrid structure-parameter learning. Fuzzy inference systems has the difficulty of parameter learning. Here we develop a coding format to determine a fuzzy neural network(FNN) model by chromosome in a genetic algorithm(GA) and present systematic approach to identify the parameters and structure of FNN. The proposed FNN can automatically identify the fuzzy rules and tune the membership functions by modifying the connection weights of the networks using the GA and the back-propagation learning algorithm. In order to show effectiveness of it we simulate and compare with conventional methods.

  • PDF

퍼지제어 시스템을 위한 인공신경망 설계 (Design of Artificial Neural Networks for Fuzzy Control System)

  • 장문석;장덕철
    • 한국정보처리학회논문지
    • /
    • 제2권5호
    • /
    • pp.626-633
    • /
    • 1995
  • 퍼지 시스템 모델링에 있어서, 퍼지 규칙을 인식하고 퍼지 추론의 소속함수를 조 정하기란 매우 어렵다. 본 논문에서는 인공신경망을 이용함으로써, 자동으로 퍼지 규 칙을 인식하고 동시에 퍼지 추론의 소속함수를 조정할 수 있는 퍼지신경망 모델을 제 시하고, 인공신경망의 수렴도를 향상시키기 위해 개선된 역전파 알고리즘을 사용하여 학습에 사용하였다. 이 방법의 타당성을 로보트 매니풀레이터를 통해 검증 한다.

  • PDF

인공신경망과 퍼지규칙 추출을 이용한 상황적응적 전문가시스템 구축에 관한 연구 (A Study on the Self-Evolving Expert System using Neural Network and Fuzzy Rule Extraction)

  • 이건창;김진성
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.231-240
    • /
    • 2001
  • Conventional expert systems has been criticized due to its lack of capability to adapt to the changing decision-making environments. In literature, many methods have been proposed to make expert systems more environment-adaptive by incorporating fuzzy logic and neural networks. The objective of this paper is to propose a new approach to building a self-evolving expert system inference mechanism by integrating fuzzy neural network and fuzzy rule extraction technique. The main recipe of our proposed approach is to fuzzify the training data, train them by a fuzzy neural network, extract a set of fuzzy rules from the trained network, organize a knowledge base, and refine the fuzzy rules by applying a pruning algorithm when the decision-making environments are detected to be changed significantly. To prove the validity, we tested our proposed self-evolving expert systems inference mechanism by using the bankruptcy data, and compared its results with the conventional neural network. Non-parametric statistical analysis of the experimental results showed that our proposed approach is valid significantly.

  • PDF

개별 입력 공간 기반 퍼지 뉴럴 네트워크에 의한 최적화된 패턴 인식기 설계 (Design of Optimized Pattern Recognizer by Means of Fuzzy Neural Networks Based on Individual Input Space)

  • 박건준;김용갑;김변곤;황근창
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.181-189
    • /
    • 2013
  • 본 논문에서는 패턴 인식기를 설계하기 위하여 개별 입력 공간을 기반으로 한 퍼지 뉴럴 네트워크를 소개한다. 제안된 퍼지 뉴럴 네트워크는 각 입력 공간을 개별적으로 분할함으로서 네트워크를 구성한다. 규칙의 전반부는 개별적 입력 공간을 퍼지 분할하여 독립적으로 구성하고, 규칙의 후반부는 다항식으로서 표현된다. 퍼지 뉴럴 네트워크의 학습은 퍼지 규칙의 후반부에 있는 뉴런의 연결가중치를 조정함으로써 실현되고, 오류 역전파 알고리즘을 이용하여 실현한다. 또한, 제안한 네트워크의 파라미터를 최적화하기 위하여 실수 코딩 유전자 알고리즘을 이용한다. 마지막으로, 패턴 인식을 위한 실험 데이터를 이용하여 최적화된 패턴 인식기를 설계한다.

진화론적 최적 퍼지다항식 신경회로망 모델 및 소프트웨어 공정으로의 응용 (Genetically Optimized Fuzzy Polynomial Neural Networks Model and Its Application to Software Process)

  • 이인태;박호성;오성권;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.337-339
    • /
    • 2004
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs). Proceeding the layer, this model creates the optimal network architecture through the selection and the elimination of nodes by itself. So, there is characteristic of flexibility. We use a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. GAs is applied to improve the performance with optimal input variables and number of input variables and order. To evaluate the performance of the GAs-based FPNNs, the models are experimented with the use of Medical Imaging System(MIS) data.

  • PDF

K1-궤도차량의 운동제어를 위한 퍼지-뉴럴제어 알고리즘 개발 (Development of Fuzzy-Neural Control Algorithm for the Motion Control of K1-Track Vehicle)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.70-75
    • /
    • 1997
  • This paper proposes a new approach to the design of fuzzy-neuro control for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

EXISTENCE AND GLOBALLY EXPONENTIAL STABILITY OF PERIODIC SOLUTION OF IMPULSIVE FUZZY BAM NEURAL NETWORKS WITH DISTRIBUTED DELAYS AND VARIABLE COEFFICIENTS

  • Zhang, Qianhong;Yang, Lihui;Liao, Daixi
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.1031-1049
    • /
    • 2012
  • In this paper, a class of impulsive fuzzy bi-directional associative memory (BAM) neural networks with distributed delays and variable coefficients are considered. Using Lyapunov functional method and fixed point theorem, we derived some sufficient conditions for the existence and globally exponential stability of unique periodic solution of the networks. The results obtained are new and extend the previous known results. In addition, an example is given to show the effectiveness of our results obtained.

Fuzzy Logic Based Neural Network Models for Load Balancing in Wireless Networks

  • Wang, Yao-Tien;Hung, Kuo-Ming
    • Journal of Communications and Networks
    • /
    • 제10권1호
    • /
    • pp.38-43
    • /
    • 2008
  • In this paper, adaptive channel borrowing approach fuzzy neural networks for load balancing (ACB-FNN) is presented to maximized the number of served calls and the depending on asymmetries traffic load problem. In a wireless network, the call's arrival rate, the call duration and the communication overhead between the base station and the mobile switch center are vague and uncertain. A new load balancing algorithm with cell involved negotiation is also presented in this paper. The ACB-FNN exhibits better learning abilities, optimization abilities, robustness, and fault-tolerant capability thus yielding better performance compared with other algorithms. It aims to efficiently satisfy their diverse quality-of-service (QoS) requirements. The results show that our algorithm has lower blocking rate, lower dropping rate, less update overhead, and shorter channel acquisition delay than previous methods.

Neuro-Fuzzy를 이용한 GMA 용접의 비드형상 추론 알고리즘 개발 (Development of Inference Algorithm for Bead Geometry in GMAW using Neuro-Fuzzy)

  • 김면희;이종혁;이태영;이상룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.608-611
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) process, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWB (contact- tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using negro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks.

  • PDF