• 제목/요약/키워드: Fuzzy Methods

검색결과 1,187건 처리시간 0.027초

반도체식 가스센서와 패턴인식방법을 이용한 혼합가스의 정량적 분석 (Quantitative analysis of gas mixtures using a tin oxide gas sensor and fast pattern recognition methods)

  • 이정헌;조정환;전기준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.138-140
    • /
    • 2005
  • A fuzzy ARTMAP neural network and a fuzzy ART neural network are proposed to identify $H_2S$, $NH_3$ and their mixtures and to estimate their concentrations, respectively. Features are extracted from a micro gas sensor array operated in a thermal modulation plan. After dimensions of the features are reduced by a preprocessing scheme, the features are fed into the proposed fuzzy neural networks. By computer simulations, the proposed methods are shown to be fast in learning and accurate in concentration estimating. The results are compared with other methods and discussed.

  • PDF

Fuzzy Classification Method for Processing Incomplete Dataset

  • Woo, Young-Woon;Lee, Kwang-Eui;Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • 제8권4호
    • /
    • pp.383-386
    • /
    • 2010
  • Pattern classification is one of the most important topics for machine learning research fields. However incomplete data appear frequently in real world problems and also show low learning rate in classification models. There have been many researches for handling such incomplete data, but most of the researches are focusing on training stages. In this paper, we proposed two classification methods for incomplete data using triangular shaped fuzzy membership functions. In the proposed methods, missing data in incomplete feature vectors are inferred, learned and applied to the proposed classifier using triangular shaped fuzzy membership functions. In the experiment, we verified that the proposed methods show higher classification rate than a conventional method.

Control of Variable Reluctance Motors: A Comparison between Classical and Lyapunov-Based Fuzzy Schemes

  • Filizadeh, S.;Safavian, L.S.;Emadi, A.
    • Journal of Power Electronics
    • /
    • 제2권4호
    • /
    • pp.305-311
    • /
    • 2002
  • In this paper, two approaches for designing tracking controllers for a variable reluctance motor (VRM), namely the Lyapunov-based fuzzy approach and the classical approach, are compared. The nonlinear model of a VRM is first addressed. The two control schemes are introduced afterwards, and then applied to obtain tracking controllers. Simulation results of a sample case, to which the methods are applied, are also presented. Comparison of the methods based on the results obtained concludes the paper.

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

DESIGN AND DEVELOPMENT OF AN OPTIMAL INTELLIGENT FUZZY LOGIC CONTROLLER FOR LASER TRACKING SYSTEM

  • Lu, Jia;Cannady, James
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2258-2263
    • /
    • 2003
  • This paper presents the design and development of an optimal fuzzy logic controller (FLC) for a laser tracking system. An optimal intelligent fuzzy logic controller was founded on integral criterion of the fuzzy models and three-dimensional fuzzy control. Research had been also concentrated on the methods for multivariable fuzzy models for the purposes of real-time process. Simulation results have shown remarkable tracking performance of this fuzzy PID controller.

  • PDF

퍼지종속관계 및 퍼지측도를 이용한 다기준평가방법 (Multicriteria Decision-Making Mehtodology Using Fuzzy Dependence Relations and Fuzzy Measure)

  • 정택수;정규련
    • 한국지능시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.24-34
    • /
    • 1994
  • Scientific involvement in complex decision-making system, characterized by multicriteria phenomena and fuzziness inherent in the structure of information, requires suitable methods. Especially, when powerful dependent criteria are introduced and their weighted value structure is ignorant, the systems are become more complex. This paper presents a fuzzy dependenced relation model and fuzzy measure model for this kind of multicriteria decision-making. The model we propose is based on fuzzy relation and fuzzy measure in fuzzy systems theory. For the application of the model, a numdrical example is quoted.

  • PDF

Agent Based Information Security Framework for Hybrid Cloud Computing

  • Tariq, Muhammad Imran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.406-434
    • /
    • 2019
  • In general, an information security approach estimates the risk, where the risk is to occur due to an unusual event, and the associated consequences for cloud organization. Information Security and Risk Management (ISRA) practices vary among cloud organizations and disciplines. There are several approaches to compare existing risk management methods for cloud organizations but their scope is limited considering stereo type criteria, rather than developing an agent based task that considers all aspects of the associated risk. It is the lack of considering all existing renowned risk management frameworks, their proper comparison, and agent techniques that motivates this research. This paper proposes Agent Based Information Security Framework for Hybrid Cloud Computing as an all-inclusive method including cloud related methods to review and compare existing different renowned methods for cloud computing risk issues and by adding new tasks from surveyed methods. The concepts of software agent and intelligent agent have been introduced that fetch/collect accurate information used in framework and to develop a decision system that facilitates the organization to take decision against threat agent on the basis of information provided by the security agents. The scope of this research primarily considers risk assessment methods that focus on assets, potential threats, vulnerabilities and their associated measures to calculate consequences. After in-depth comparison of renowned ISRA methods with ABISF, we have found that ISO/IEC 27005:2011 is the most appropriate approach among existing ISRA methods. The proposed framework was implemented using fuzzy inference system based upon fuzzy set theory, and MATLAB(R) fuzzy logic rules were used to test the framework. The fuzzy results confirm that proposed framework could be used for information security in cloud computing environment.

Uncertain Centralized/Decentralized Production-Distribution Planning Problem in Multi-Product Supply Chains: Fuzzy Mathematical Optimization Approaches

  • Khalili-Damghani, Kaveh;Ghasemi, Peiman
    • Industrial Engineering and Management Systems
    • /
    • 제15권2호
    • /
    • pp.156-172
    • /
    • 2016
  • Complex and uncertain issues in supply chain result in integrated decision making processes in supply chains. So decentralized (distributed) decision making (DDM) approach is considered as a crucial stage in supply chain planning. In this paper, an uncertain DDM through coordination mechanism is addressed for a multi-product supply chain planning problem. The main concern of this study is comparison of DDM approach with centralized decision making (CDM) approach while some parameters of decision making are assumed to be uncertain. The uncertain DDM problem is modeled through fuzzy mathematical programming in which products' demands are assumed to be uncertain and modeled using fuzzy sets. Moreover, a CDM approach is customized and developed in presence of fuzzy parameters. Both approaches are solved using three fuzzy mathematical optimization methods. Hence, the contribution of this paper can be summarized as follows: 1) proposing a DDM approach for a multi-product supply chain planning problem; 2) Introducing a coordination mechanism in the proposed DDM approach in order to utilize the benefits of a CDM approach while using DDM approach; 3) Modeling the aforementioned problem through fuzzy mathematical programming; 4) Comparing the performance of proposed DDM and a customized uncertain CDM approach on multi-product supply chain planning; 5) Applying three fuzzy mathematical optimization methods in order to address and compare the performance of both DDM and CDM approaches. The results of these fuzzy optimization methods are compared. Computational results illustrate that the proposed DDM approach closely approximates the optimal solutions generated by the CDM approach while the manufacturer's and retailers' decisions are optimized through a coordination mechanism making lasting relationship.

가중 퍼지 페트리네트 표현에서 경험정보로 확신도를 이용하는 가중 퍼지추론 (Weighted Fuzzy Reasoning Using Certainty Factors as Heuristic Information in Weighted Fuzzy Petri Net Representations)

  • 이무은;이동은;조상엽
    • Journal of Information Technology Applications and Management
    • /
    • 제12권4호
    • /
    • pp.1-12
    • /
    • 2005
  • In general, other conventional researches propose the fuzzy Petri net-based fuzzy reasoning algorithms based on the exhaustive search algorithms. If it can allow the certainty factors representing in the fuzzy production rules to use as the heuristic information, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more effective manner. This paper presents a fuzzy Petri net(FPN) model to represent the fuzzy production rules of a rule-based system. Based on the fuzzy Petri net model, a weighted fuzzy reasoning algorithm is proposed to Perform the fuzzy reasoning automatically, This algorithm is more effective and more intelligent reasoning than other reasoning methods because it can perform fuzzy reasoning using the certainty factors which are provided by domain experts as heuristic information

  • PDF

Fuzzy Applications in a Multi-Machine Power System Stabilizer

  • Sambariya, D.K.;Gupta, Rajeev
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.503-510
    • /
    • 2010
  • This paper proposes the use of fuzzy applications to a 4-machine and 10-bus system to check stability in open conditions. Fuzzy controllers and the excitation of a synchronous generator are added. Power system stabilizers (PSSs) are added to the excitation system to enhance damping during low frequency oscillations. A fuzzy logic power system stabilizer (PSS) for stability enhancement of a multi-machine power system is also presented. To attain stability enhancement, speed deviation ($\Delta\omega$) and acceleration ($\Delta\varpi$) of the Kota Thermal synchronous generator rotor are taken as inputs to the fuzzy logic controller. These variables have significant effects on the damping of generator shaft mechanical oscillations. The stabilizing signals are computed using fuzzy membership functions that are dependent on these variables. The performance of the fuzzy logic PSS is compared with the open power system, after which the simulations are tested under different operating conditions and changes in reference voltage. The simulation results are quite encouraging and satisfactory. Similarly, the system is tested for the different defuzzification methods, and based on the results, the centroid method elicits the best possible system response.