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ABSTRACT 

Complex and uncertain issues in supply chain result in integrated decision making processes in supply chains. So de-
centralized (distributed) decision making (DDM) approach is considered as a crucial stage in supply chain planning. 
In this paper, an uncertain DDM through coordination mechanism is addressed for a multi-product supply chain plan-
ning problem. The main concern of this study is comparison of DDM approach with centralized decision making 
(CDM) approach while some parameters of decision making are assumed to be uncertain. The uncertain DDM prob-
lem is modeled through fuzzy mathematical programming in which products’ demands are assumed to be uncertain 
and modeled using fuzzy sets. Moreover, a CDM approach is customized and developed in presence of fuzzy parame-
ters. Both approaches are solved using three fuzzy mathematical optimization methods. Hence, the contribution of this 
paper can be summarized as follows: 1) proposing a DDM approach for a multi-product supply chain planning prob-
lem; 2) Introducing a coordination mechanism in the proposed DDM approach in order to utilize the benefits of a 
CDM approach while using DDM approach; 3) Modeling the aforementioned problem through fuzzy mathematical 
programming; 4) Comparing the performance of proposed DDM and a customized uncertain CDM approach on multi-
product supply chain planning; 5) Applying three fuzzy mathematical optimization methods in order to address and 
compare the performance of both DDM and CDM approaches. The results of these fuzzy optimization methods are 
compared. Computational results illustrate that the proposed DDM approach closely approximates the optimal solu-
tions generated by the CDM approach while the manufacturer’s and retailers’ decisions are optimized through a coor-
dination mechanism making lasting relationship. 
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1.  INTRODUCTION 

Supply Chain Management is an important issue in 
today’s competitive business world. Companies need to 

have firm relationships and interactions with their sup-
pliers for a successful Supply chain system (Meredith, 
2007). The force of information technology can help 
supply chain members to establish partnerships for bet-
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ter supply chain system efficiency. However, the com-
plete information sharing between the manufacturer and 
the third party logistic provider is not possible due to 
information privacy and thus the existing research re-
sults cannot be directly used for real supply chain plan-
ning problem (Stadtler, 2009). Distributed Decision 
Making (DDM) is a discipline of decision theory in 
which decision making power is distributed among sev-
eral decision making units (Schneeweiss, 2003). These 
decisions are interrelated because one decision affects 
the outcome of another. It has been quite acknowledged 
that, whereas centralized approaches are theoretically 
better in pursuing global system performance, they have 
several drawbacks concerning operational costs, reliabil-
ity, inventory costs and so forth (Ertogral, 2000). This is 
the reason why several researchers offer to use decen-
tralized approaches for distributed production planning. 

In real life supply chain planning problems several 
uncertainties occur. For instance the demand of each 
level of supply chain usually is mixed with a notable 
amount of uncertainty. In such situation CDM and DDM 
approaches may have different performances. Generally, 
CDM approach makes the process of decision making 
simple, although the operational cost of the supply chain 
dramatically will increase due to the course that all deci-
sion should be processed and made in a central unit. 
Moreover, high integration including both data, material, 
goods, and finance, should be implemented while using 
CDM approaches. The reliability of whole supply chain 
is involved in the reliability of central decision making 
unit. Whenever the central unit fails all units of supply 
chain will fail as they cannot make an independent deci-
sion. In such situation a DDM approach which empow-
ers all levels of chain in order to make the related deci-
sions while the workload of central unit is reduced may 
be a suitable alternative. The inventory, supply, purchase, 
production, transportation, and distribution are made by 
the associated units in supply chain while the central 
unit just co-ordinate, analyze, and ease these decisions. 
If one level of supply chain fails the performance of the 
chain will decrease although some parts may take the 
associated decisions.  

Hence, the purpose of this study is to analyze and 
compare the performance of two classes of supply chain 
optimization approaches, i.e., CDM and DD Mappro-
aches, in presence of uncertainty using different types of 
fuzzy optimization methods. On the other hand, the main 
question of this study is: what are the profit and the op-
timal policy of centralized optimization in comparison 
with decentralize optimization in presence of uncertainty? 
Centralize and decentralized models proposed by He-
geman et al. (2014) are developed in presence of uncer-
tainty modeled through fuzzy sets and are investigated 
using three fuzzy mathematical programming optimiza-
tion approaches. 

The paper is arranged as follows. Section 2 pre-
sents a brief literature review about centralized/decen-
tralized models. Uncertain mathematical programming 

approaches in the supply chain as also reviewed in Sec-
tion 2. Section 3 presents the proposed modeling in both 
deterministic and uncertain situations. The coordination 
mechanism is also presented in Section 3.The fuzzy 
solution approaches are developed in Section 4. The 
numerical results are presented and discussed in Section 
5.The conclusion remarks and future research directions 
are presented in Section 6. 

The contribution of this paper can be summarized 
as follows: 1) proposing a DDM through coordination 
mechanism for a multi-product supply chain planning 
problem; 2) Modeling the aforementioned problem thro-
ugh fuzzy mathematical programming; 3) Comparing 
the performance of proposed DDM and a customized 
uncertain CDM approach on multi-product supply chain 
planning; 4) Applying three fuzzy mathematical optimi-
zation methods in order to address and handle both 
DDM and CDM approaches. 

2.  LITERATURE OF PAST WORKS 

Decentralized SCM coordination mechanisms usu-
ally follow one of three approaches including, inventory 
control, quantity discounts, and contracting (Schneeweiss, 
2004). Most of the research in this area is based on the 
classic work proposed by Clark and Scarf (1960) in which 
the optimal inventory policies in two-echelon systems 
was discussed. Cachon (2001) first introduced the coop-
eration concept between the different agents in the sup-
ply chain using game theory concepts. The first DDM 
system analyzed by Cao and Chen (2006) was a decen-
tralized facility location problem. They changed a de-
centralized two level nonlinear programming model into 
an equivalent linear single level model. Uncertainty plays 
an important role in supply chain management context. 
Three basic approaches, including: (1) fuzzy program-
ming, (2) stochastic programming and (3) robust pro-
gramming are used to cope with uncertainty. Uncertainty 
is usually considered in the model parameters including: 
demands, transportation costs, handling costs and so on. 
In SCM, the companies are not considered as independ-
ent entities, but interacting entities which need to coor-
dinate and integrate their process along the SC. Thus, 
the uncertainties related to external and internal proc-
esses constitute a challenge for the coordinated and in-
tegrated processes of SCM (Nishi, 2007). 

Jung et al. (2008) developed a decentralized supply 
chain planning framework based on minimal-informa-
tion sharing between the manufacturer and a third party 
logistics provider. Each one used its own model and 
kept private information. The coordination mechanism 
certified local solutions, converged towards a feasible 
solution, although the levels did not cooperate as a team. 
Each level strived for local optimization. However, op-
portunistic behavior was not demonstrated as the infor-
mation they exchanged was truthful. While the different 
levels in the proposed model by Jung et al. (2008) had 
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to wait for input from the other level before proceeding 
to search for their new local optimum. Pibernik and 
Sucky (2006) pointed out that centralized decision mak-
ing achieved better results than decentralized decision 
making. Although, they argued that there were two ma-
jor drawbacks with implementing the centralized option, 
i.e., the necessary alignment of individual decisions to 
SC-wide objectives and SC-wide information sharing. 
On the other hand, decentralized systems tend to be more 
robust to failure than centralized systems. Centralized 
decision making is usually favored when the industry 
faces a complex yet static problem. Therefore, the adop-
tion of centralized or distributed decision making at a 
specific temporal level will strongly depend on the SC 
and the problem under study. 

Uncertainty in SCM optimization problems is typi-
cally incorporated into mathematical programming mo-
dels. In some cases, uncertainty exists not due to rando-
mness but fuzziness where doubt arises about the cor-
rectness of statements, exactness of concepts and judg-
ments having little to do with occurrence of events (Lu-
handjula, 2007). This type of uncertainty is handled us-
ing fuzzy set theory which was developed by Zadeh 
(1965). Vahdani et al. (2012) defined a novel approach 
for designing a reliable network of production in closed 
loop supply chain under uncertainty. For this purpose, a 
centralized mathematical programming formulation was 
developed which minimized the total transport costs of a 
logistics network. To solve the model, a new hybrid so-
lution was introduced by combining robust optimization 
approach and fuzzy multi objective programming that 
implemented using GAMS software. 

Khalili-Damghani and Shahrokh (2014) proposed a 
multi-period multi-objective multi-product aggregate pro-
duction planning problem. Three objective functions, in-
cluding minimizing total cost, maximizing customer ser-
vices level, and maximizing the quality of end product, 
were considered, simultaneously. Several constraints were 
also considered by Khalili-Damghani and Shahrokh (2014). 
The proposed problem was solved using Fuzzy Goal 
Programming (FGP) approach (Khalili-Damghani and 
Shahrokh, 2014). Min (2015) proposed a supply chain 
consisting of a manufacturer under emissions regulation 
and a permit supplier. Min (2015) developed a joint 
production quantity and investment strategy in order to 
reduce permit production cost decisions for centralized 
and decentralized supply chains. Min (2015) found ana-
lytically that the proposed cost-sharing contract with 
reasonable parameters could coordinate the supply chain 
whereas the wholesale price contract was not desirable 
to achieve the system-wide profit. 

Zanjani et al. (2010) addressed a multi-echelon pro-
duction planning problem based on non-homogeneous 
quality of materials. To solve the model robust optimi-
zation approach was applied. The implementation re-
sults of the proposed centralized model for a sawmill 
factory illustrated the importance of using robust opti-
mization in generating more robust production plans in 

the uncertain environments compared with stochastic 
programming. Lin and Wang (2011) studied an inte-
grated configuration Supply Chain network design pro-
blem under demand and supply uncertainty. They em-
phasized the strategic locating and capacity setting costs. 
Finally an L-shaped decomposition in the master prob-
lem was proposed for solving the model. Peidro et al. 
(2009) introduced a unique centralized/decentralized 
planning model considering production and distribution 
planning activities for a multi-echelon, multi-product 
and multi-period SC network. The model was formula-
ted as a fuzzy mixed-integer linear programming (FMILP) 
in which, objective function was to minimize the total 
cost including production cost, the costs corresponding 
to idleness, inventory holding cost, and transport cost. 
Peidro et al. (2009) defined an approach to transform 
the proposed FMILP into an equivalent auxiliary crisp 
MILP model. 

There are several fuzzy techniques applied on SC 
optimization models. The relevant research works in this 
area have been reviewed through the last decade and 
summarized in Table1. As can be seen in Table 1, the 
previous researches considered demand-side uncertainty 
(Hegeman et al., 2014; Arikan, 2013; Vahdani et al., 
2012; Lu et al., 2012; Pishvae et al., 2011; Peidro et al., 
2009; Xu et al., 2008; Selma et al., 2007; Shu et al., 
2005). Moreover, it can be deduced that a large number 
of centralized mathematical programming models have 
been developed to simultaneously optimize the integra-
tion of the entire SC. 

These researches addressed a wide variety of SC 
configurations ranging from the single-stage SC to the 
multi-stage SC. However, in the vast majority of these 
works, the conditions and justification for using the cen-
tralized approach were not explicitly described. Altho-
ugh there was an increasing number of contributions 
that combined mathematical programming approaches 
with the most realistic decentralized decision making, 
the SCs considered in most of these works were rela-
tively simple in comparison with the real world SCs. 

As the decisions in levels of supply chain are made 
under uncertain situations in real life problems, so the 
performance of two main approaches, i.e., CDM and 
DDM, in presence of uncertainty is interesting and is the 
main concern of this study. Due to our best knowledge 
there is no prior research work in this area. The main 
theme of this study is the comparison of performance of 
CDM and DDM approaches in presence of uncertainty. 
In this paper, the CDM approach proposed by Hegeman 
et al. (2014) is developed for an uncertain environment 
in which some parameters of decision making are mixed 
with vagueness and parameterized through fuzzy sets. 
Moreover, a DDM approach for a two level supply chain, 
including manufacturer’s model and retailers’ models, is 
proposed in uncertain environment. Then a coordination 
mechanism is proposed to joint the segments of DCM 
approach (i.e., manufacturer’s model and retailers’ model). 
On the other hand, both CDM and DDM approaches are 



Uncertain Centralized/Decentralized Production-Distribution Planning Problem in Multi-Product Supply Chains 
Vol 15, No 2, June 2016, pp.156-172, © 2016 KIIE 159
  

 

extended into uncertain environment parameterized us-
ing fuzzy sets. Then, three fuzzy mathematical program-
ming models are applied on the fuzzy models. The per-
formance of fuzzy CDM and DDM approaches are com-
pared using all three fuzzy mathematical programming 
using numerical examples. All the fuzzy mathematical 
programming approaches are coded and implemented 
using GAMS software. 

3.  MATHEMATICAL FORMULATION 

As the model by Hegeman et al. (2014) is going to 
be extend here, so in this the centralized general produc-
tion and distribution planning model proposed by He-
geman et al. (2014) is revisited. 

 

3.1 Centralized model by Hegeman et al. (2014) 

The centralized production and distribution plan-
ning problem considers a supply chain of manufacturing 
plants and retailers, with a planning horizon of multiple 
time periods. The manufacturing plants produce multi-
ple items with a limited production capacity. The objec-
tive of the centralized planning problem is to maximize 
profits over the planning periods. The decision maker 
has all related data such as demands, inventories, pro-
duction costs, and plans the production and distribution 
of final product items and subcomponent items. A 
mixed-integer model is employed to solve the central-
ized production and distribution planning problem. First, 
the used notations are presented as follows: 

 
 

Table 1. Literature of uncertain centralized/decentralized approaches in SC 

Model Objective function Uncertainty of model 
Cost Research Centra- 

lized 
Decen-
tralized Other Service 

level Income Inven-
tory

Short-
age

Trans-
port

Order-
ing

Loca-
ting

Parame-
ters Supply De-

mand 

Solution  
approach 

Hegeman  
et al. (2014) * *    * * *     * Exact using 

Cplex 
Arikan  
(2013) *     *   *  * *  Exact using 

GAMS 
Vahdani  
et al. (2012) *       *  * *   Exact using 

GAMS 
Lu et al.  
(2012) * *   * *       * Exact using 

Lingo 
Lin and Wang  
(2011) *  *   *   *   * * Heuristic  

algorithm 

Wang et al. 
(2011) *  *     *  *    

Normalized 
constraint 
method 

Sawik (2011) *      *     *  Exact using 
CPLEX 

Pishvae et al. 
(2011) *      * *  * *  * Exact using 

CPLEX 
Zanjirani et al. 
(2010) *   *   *    *   Exact using 

CPLEX 
Bassell and Gard-
ner (2010) *    *   *  *    Exact using 

GAMS 
Li et al. (2010) *    *  * *  *  *  Game theory 

Stadtler (2009) * *   *   *  * *   Exact using 
GAMS 

Peidro et al. 
(2009) * *      *   * * * Fuzzy ap-

proach 

Xu et al. (2008) *   *   * *  * *  * Genetic  
algorithm 

Jung et al. (2008) * *      *      MILP 
Selma et al. 
(2007) *      * *  *   * Branch and 

Bound 
Cao and Chen 
(2006) * *       *     Heuristic  

algorithm 

Shu et al. (2005) *       * * *   * Column  
generation 
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Indices: 
: Index of plants, (1, , )∈ Li i I  
: Index of retailers, (1, , )∈ Lj j J  
: Index of items, (1, , )∈ Lk k K  
: Index of time periods, (1, , )∈ Lt t T  

 
Parameters: 

ikc = processing cost of item k at plant i 
iks = setup cost for item k at plant i 
iko = processing time for item k at plant i 
iku = setup time for item k at plant i 
p

ikh = inventory holding cost of item k at plant i period t 
1 if  plant    can  produce  item  
0 if   plant    can  NOT  product  item  
⎧

= ⎨
⎩

ik
i k
i k

γ  

′ik kB = required quantity of item k for the production of on 
item k’ at plant i 

iL = production capacity of plant i 
ijkd = unit transportation cost of item k between plant i and 

retailer j 
g = fixed cost per vehicle 
B = fixed capacity per vehicle 

jktE = demand for item k at retailer j in period t 
jktF = total forecast demand for item k at retailer j in pe-

riod t; 
jktE = A part of jktF  
jkp = unit selling price of item k at retailer j 

r
jkh = inventory holding cost of item k at retailer j per 

period 
r
jw = capacity for units of inventory at retailer j 

jkv = stock out cost per unit of item k at retailer j 
M = A large positive number 
 
Decision Variables 

iktx = quantity of item k produced in plant i in period t 
1 if setup  must  be  performed  at  plant    for  item  

  in  period  
0 otherwise

⎧
⎪= ⎨
⎪
⎩

ikt

i
y k t  

p
ikta = level of inventory of item k at plant i in period t 
iktc = quantity of item k consumed as subcomponent at 

plant i in period t 
′ii ktqi = quantity of components k shipped from plant i to 

plant i’ in period t 
ijktqj = quantity of item k transported from plant i to reta-

tiler j in period t 
ijtz = number of vehicles required for distribution from 

plant i to retailer j in period t 
jktz = shortage volume of item k for retailer j in period t 
jktsi = outcome variable with available supply to be sent 

to retailer j in period t 
 

The proposed centralized production distribution 
mathematical programming is as follows. 

 
Model: 

1 ( −= + −∑∑ ∑ ∑r r
jk jkt ijkt jkt

j k t i
Max Z p a qj a  (1) 

( )− + +∑∑∑ ∑∑∑ ∑∑∑ p p
ik ikt ik ikt ik ikt

i k t i k t i k t
c x s y h a  

( (− +∑∑∑ ∑∑∑r r
jk jkt jk jkt

j k j k tt

h a v F   

1( )))−− + −∑r r
jkt ijkt jkt

i

a q j a  

( )− × +∑∑∑ ∑∑∑∑ijt ijk ijkt
i j t i j k t

g z d q j  

( ) ,+ ≤∑ ikt ik ikt ik i
k

x o y u L             ,∀ ∀i t  (2) 

,≤ikt iktx My  , ,∀ ∀ ∀i t k  (3) 
,≤ikt ikx Mγ                     , ,∀ ∀ ∀i t k  (4) 

´ ´
´

,= ∑ikt ik k ik t
k

c B x                 , ,∀ ∀ ∀i t k  (5) 

´
´

,= ∑ikt i ikt
i

c qi                   , ,∀ ∀ ∀i t k  (6) 

( 1) ,′−
′

= + − −∑ ∑p p
ikt ijkt ii ktikt ik t

j i
a a x q j q j  , ,∀ ∀ ∀i t k  (7) 

1 ,− + − ≥∑r r
jkt ijkt jkt jkt

i
a q j a E        , ,∀ ∀ ∀j t k  (8) 

1 ,− + − ≤∑r r
jkt ijkt jkt jkt

i

a q j a F        , ,∀ ∀ ∀j t k  (9) 

,≤∑ r r
jkt j

k

a w                   ,∀ ∀j t  (10) 

,≤∑ ijkt ijt
k

q j Bz                , ,∀ ∀ ∀i j t  (11) 

0,= =p r
jkoikoa a                 , ,∀ ∀ ∀i j t  (12) 

, 0,+ ≥∈ijt iktz xz 0,≥p
ikta { }0,1 , 0,∈ ≥ikt ikty C  (13) 

´ 0, 0, 0,≥ ≥ ≥r
ii kt ijkt jktqi qj a , , ,∀ ∀ ∀ ∀i j t k  

 
The objective function (1) expresses the overall net 

profit during all periods of planning. The objective func-
tion (1) is alculated by subtracting total costs from total 
revenue. Revenue is the total turnover of all retailers, 
computed by multiplying the selling price with sales 

1( ).− + −∑r r
jkt ijkt iktia q j a  The costs include production-, 

inventory holding-, stock-out- and distribution costs.  
Constraint (2) represents the production capacity 

limit at plant i in time period t. Constraint (3) ensures 
that the production is accomplished if setup is done in 
period t. Constraint (4) ensures that production of items 
is only allowed at a plant if that plant is capable of pro-
ducing that item. Constraint (5) determines the amount 
of an item that is consumed for the production of the 
upper level items, by summing the products of the pro-
duction quantities of the higher level items with the 
amount of lower level items consumed for their produc-
tion. Constraint (7) assures the inventory balance at a 
plant, with both shipments to retailers and to other 
plants taken under consideration. Constraint (8) ensures 
that the ‘core demand’ is satisfied, whilst constraint (9) 
ensures that the sale is not more than the ‘forecasted 
demand.’ Constraint (10) applies the storage capacity 
for inventory held by retailers. The number of vehicles 
required for transportation of items to retailers is con-
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sidered in constraint (11). Constraint (12) defines the 
initial inventory levels at both plants and retailers. The 
final constraint (13) enforces restrictions of non negativ-
ity, the integer and also the binary nature of decision 
variables.  

The model calculates optimal production quantities 
iktx  for all items at the various plants for all time peri-

ods and optimal amounts of ijktq j  to be shipped to the 
retailers. It will balance setup with inventory holding 
costs and delivery costs with stock-out costs. It can so 
occur that not all forecasted demand is satisfied, al-
though the inventory storage capacity at retailers exists 
to minimize the incidence of demand not being satisfied. 

3.2 Decentralized (Distributed) Deterministic Model 

The centralized deterministic model is decomposed 
into two separate models. These separate models, each 
pertain to a different decision maker, one that controls 
the manufacturing plants and distribution of items, and 
one that controls the retailers. A coordination mecha-
nism is developed to link the two models and form the 
distributed deterministic model. The distributed decision 
making process is also presented to enhance clarity.  

 
3.2.1 Manufacturer’s Model  

The first decision maker has control over the pro-
duction of items in the plants, and their distribution to 
the retailers. It is assumed that distribution of items is a 
component of this decision maker’s model because it is 
typically the manufacturer’s responsibility to deliver a 
product to its customer. It is notable that the wholesale 
price of the manufacturer is ignored in this model. The 
notations used in manufacturer’s model are as follows. 

 
Indices: 

, (1, , 3)= ∈ Li planta i  
, (1, 2)= ∈j retailers j  

, (1, , 8)= ∈ Lk items k  
, (1, , 5)= ∈ Lt time periods t  

 
Parameters: 
All parameters are the same as in the centralized model, 
except for the following parameters that will be added in 
the manufacturer’s model. 

jkvi = unit supply shortage penalty cost of retailer j for 
item k 

jktSJ = requested supply quantity for item k by retailer j 
in period t (receive from j) 

Considering the above notations, the manufacturer’s 
model is proposed as follows. 
 
Model: 

1 ( )= + +∑ ∑∑∑ ∑∑∑ ∑∑ p p
ik ikt ik ikt ik ikt

i k i k t i kt t

Min Z c x s y h a  

)+ + + ∑∑∑∑ ∑∑∑∑ ∑∑ijt ijk ijkt jk jkt
i j t i j k t j k t

gz d qj vi z  (14) 

( ) ,+ ≤∑ ikt ik ikt ik i
k

x o y u L           ,∀ ∀i t  (15) 

,≤ikt iktx My                   , ,∀ ∀ ∀i t k  (16) 
,≤ikt ikx Mγ                      , ,∀ ∀ ∀i t k  (17) 

´ ´
´

,= ∑ikt ik k ik t
k

c B x                  , ,∀ ∀ ∀i t k  (18) 

´
´

,=∑ikt i ikt
i

c qi                   , ,∀ ∀ ∀i t k  (19) 

( 1) ,′−
′

= + − −∑ ∑p p
ikt ijkt ii ktikt ik t

j i
a a x q j q j  , ,∀ ∀ ∀i t k  (20) 

,+ =∑ ijkt jkt jkt
i

q j z Sj              , ,∀ ∀ ∀j t k  (21) 

,≤ ×∑ ijkt jkt
k

q j B z                , ,∀ ∀ ∀i j k  (22) 

,=∑ ijkt jkt
i

q j Si                  , ,∀ ∀ ∀i j k  (23) 

0,=p
ikoa                      ,∀ ∀i k  (24) 

{ }0 ,+∈ ∪jktz z                , ,∀ ∀ ∀j t k  (25) 
 
The manufacturer does not know the actual demand 

for final products. The manufacturer only knows the re-
quested supply quantities for each item per period as 
submitted by the retailers. This quantity is represented 
by a new parameter .jktSJ  The manufacturer should en-
deavor to fill the requested supply quantities to the best 
of his ability, because it contributes to Supply Chain 
(SC) profitability. To make the model strive for this, a 
penalty will be incurred for every unit of unfilled re-
quested supply. For this reason, a shortage penalty cost 

ijkv  and a shortage quantity decision variable jktZ  have 
been defined. 

The manufacturer has no knowledge of actual de-
mand or of retail prices. Maximizing profit is thus not a 
valid objective for this model. Instead, the manufacturer 
will try to minimize its costs, whereas meeting supply, 
because that ought to contribute to SC profitability. The 
objective function (14) now only includes production, 
setup and inventory holding costs for the plants, distri-
bution costs and supply shortage penalty costs. Because 
having shortage negatively affects the objective function, 
the model will try to fill all demand. The penalty cost 
per unit of shortage should be high enough for the ma-
nufacturer to generally prefer production and distribut-
ing to incurring the penalty. Constraints (15-20) are the 
same as in the centralized model, but constraint (21) 
replaces the constraints that ensured filling demand. It 
makes sure that the amount of an item shipped from all 
the plants to a retailer plus any shortage equals the re-
quested supply quantity by that retailer for that item. If 
the shipped amounts do not suffice, the shortage is posi-
tive and the penalty will be incurred. Constraint (22) 
governs the amount of vehicles required for transporta-
tion of items to retailers. Constraint (23) calculates the 
supply of an item k that is available for a retailer in a 
period t. The decision variable, ,jktSJ  is the connection 
between the manufacturer’s model and the retailers’ mo-
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del. On the other hand, it will be provided to retailers’ 
model after the manufacturer’s model has been solved. 
The retailers then know the available supply quantities 
that they can use to satisfy the demand. It will become 
clear that jktSJ  is an input variable in the retailers’ model, 
just like jktSJ  which was for the manufacturer’s model. 

 
3.2.2 Retailers’ Model  

The second decision maker has control over the re-
tailers. This can be a modeling choice, as each retailer 
could also have its own model, in which case the index j 
of the retailers would be forsaken. The notations and ex-
planation of the model are as follows. 

 
Indices: 

retailers, (1, 2)= ∈j j  
items, (1, 2)= ∈k k  
time periods, (1, , 5)= ∈ Lt t  

 
Parameters and variables are the same as in the 

centralized model, but the following parameters and 
variables will be added in retailers’ model. 

 
jktSi = offered supply quantity of item k to retailer j in 

period t 
first  iteration  it  is  infinite
then,  recevied  from  plants
⎧
⎨
⎩

 

 
Decision variables: 

jktq = quantity of item k requested from plants by retailer 
j in period t 

r
jkta = level of inventory of item k at retailer j in period t 

 
Considering the above notations, the retailers 

model is proposed as follows. 
 

Model: 
2 1( )−= + − −∑∑ ∑ ∑r r

jk jkt ijkt jkt
j k t i

Max Z p a q j a  (26) 

1(( ( ( ))−+ − + −∑∑∑ ∑∑∑ ∑r r r r
jk jkt jk jkt jkt ijkt jkt

j k t j k t i
h a v F a q j a

 
1− + − ≥∑r r

jkt ijkt jkt jkt
i

a q j a E    , ,∀ ∀ ∀j t k  (27) 

1− + − ≤∑r r
jkt ijkt jkt jkt

i

a q j a F    , ,∀ ∀ ∀j t k  (28) 

≤jkt jktq si                 , ,∀ ∀ ∀j t k  (29) 

≤∑ r r
jkt j

k
a w                ,∀ ∀j t  (30) 

≤jkt jktq sj                  , ,∀ ∀ ∀j t k  (31) 

0 0=r
jka                    ,∀ ∀j k  (32) 

{ }, 0 +∈ ∪r
jkt jktq a Z           , ,∀ ∀ ∀j k t  (33) 

 
First of all, the index i for the plants is no longer 

present, because it does not matter for the retailers 
where their supply comes from, as long as it comes. The 

parameter .jktSJ  is the only new parameter, and it shows 
the available supply of an item for a retailer in period t, 
which is received from the manufacturer’s model. Just 
for the first iteration of the retailers’ model it is assumed 
to be infinite. This is because of the distributed search 
for the optimal solution begins at the retailers. Because 
it does not matter from which plant the supply comes, 
the decision variable iktqj  is changed into .jktq  The latter 
decision variable only represents the item quantities re-
quested by a retailer from the manufacturer as a whole. 
The objective function (26) maximizes the profits thro-
ugh maximizing sales and minimizing inventory holding 
costs and stock-out costs. Constraints (27) and (28) still 
exist to make sure ‘core demand’ is satisfied and ‘fore-
casted demand’ not exceeded, respectively. The smallest 
modification in these constraints is that ∑ ijkti q j  is re-
placed by .jktq  Constraint (29) enforces that the reque-
sted amount of items from the manufacturer is at most 
equal provided amount by manufacturer. Constraint (30) 
is copied from the centralized model. The constraint (31) 
calculates the input variable for the manufacturer’s 
model, .jktSJ  It is simply greater than or equal to .jktq  
Constraints (32)-(33) are supplied to define the value 
and type of decision variables, respectively. 

3.3 Coordination Mechanism 

Information sharing in the distributed model is 
minimal, with only requested quantities and available 
quantities shared between the two decision makers. The 
Coordination mechanism is proposed in eleven steps as 
follows: 
Step 1. Generate initial sales plan from the distribution 

plan. 
Step 2. Compute initial demand 

initial
jktSJ  

Step 3. Calculate Retailer’s profit 
Step 4. Generate production and distribution plan from 

the manufacturer’s model. 
Step 5. If there is production shortage in manufacturer’s 

model, go to step 6, otherwise terminate the op-
timization procedure. 

Step 6. Calculate available supply quantities .jktSi  
Step 7. Calculate Manufacturer’s cost 
Step 8. Calculate gap 
Step 9. Generate sales plan from retailer’s model. 
Step 10. If the core demand can be met go to step 11, 

otherwise terminate the optimization procedure. 
Step 11. Calculate request quantity jktSJ  and go to step 3. 

 
Figure 1 shows the coordination mechanism de-

signed for cooperation of manufacturer and retailer. 
This mechanism guaranty the coordination mecha-

nism among manufacturers and retailers in supply chain. 
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3.4 Decentralized (Distributed) Model Under  
Uncertainty 

In this section, the distributed deterministic model 
is adapted to account for uncertainty in demand. The re-
tailers’ model is the model that takes demand into ac-
count. In contrast, the manufacturer has no information 
on demand. The adaptation to account for uncertainty 
will be done exclusively on the retailers’ model. 

Two parameters were used to define the demand in 
the retailers’ model i.e., ‘core demand’ and ‘forecasted 
demand.’ In possibility theory, these parameters are tur-
ned into diffuse coefficients. It is plausible that both pa-
rameters can turn out to be somewhat lower, or some-
what higher than initially thought. Consequently, a mem-
bership function that expresses that is needed. A triangu-
lar membership function is thus chosen to represent the 
uncertainty in demand parameters. It has a central value 
with a membership degree of one, and therefore the 
membership degree decreases the further the parameter 
moves away from the central value. Outside of two boun-
dary values (one left and one right), the membership de-
gree turns zero, meaning that it is not plausible that de-
mand will take on values outside of a definite interval. 
Taking ‘core demand as an example, the triangular fuzzy 
coefficient E is defined by atriple as (E1, E2, E3). E1 is 
the left boundary of the fuzzy set, E2 the central value 
for which the membership degree equals to one, and E3 
is the right boundary of the set. Furthermore, it is rea-
sonable to assume that there is less uncertainty for the 
‘core demand’ in comparison with the ‘forecasted de-
mand’ because, as it comes from a loyal customer base. 
A smaller range of values, therefore, belongs to the 
fuzzy set of core demand than of ‘forecasted demand.’  

 
3.4.1 Retailers’ Model Formulation Under Uncertainty 

The jktF  parameter in the objective function will 
be replaced with the expected value, so that the model is 
also generally valid. Because the newly defined fuzzy 
demand parameters only appear on the right hand sides 

of the constraints, only the right hand sides of the con-
straints are affected. The new terms are factored out to 
preserve linearity. The model performance is evaluated 
under demand uncertainty by applying three selected 
fuzzy approaches.  

Considering the above mentioned descriptions for 
uncertain demands the following parameters in CDM 
approach, and in the retailer’s model of DDM approach 
are assumed to be mixed with uncertainty parameterized 
through fuzzy sets: 

 
%

jktE = fuzzy demand for item k at retailer j in period t 
%

jktF = total fuzzy forecast demand for item k at retailer j 
in period t 

 
It is notable that these fuzzy parameters have been 

parameterized through fuzzy triangular numbers (TFNs). 
All other notations, parameters and indices are similar to 
those represented in crisp models. 

4.  SOLUTION PROCEDURES 

In this section three fuzzy mathematical optimiza-
tion approaches are briefly described and customized in 
order to solve both centralized and decentralized produc-
tion distribution supply chain network design problem. 

4.1 Jiménez Approach (Jiménez et al., 2007) 

This approach was first used to change the determi-
nistic model into a fuzzy model. It was presented to com-
bine fuzzy coefficients with trapezoidal membership 
functions into linear programming models. It is notable 
that the acceptable optimal solutions in degree α are not 
fuzzy numbers that makes it easier to take a decision in 
a simple way by solving a crisp parametric linear program. 

For triangular functions, Jiménez et al. (2007) sho-
wed that the expected interval of fuzzy coefficient ã = 
(a1, a2, a3), can be calculated using (34). 

 
Figure 1. Coordination Mechanism. 
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( ) ( ) ( )1 2 1 2 2 3
1 1, ,
2 2
⎡ ⎤⎡ ⎤= = × + × +⎢ ⎥⎣ ⎦ ⎣ ⎦

% %% a aEI a E E a a a a  (34) 

 
And the expected value of fuzzy coefficient ã = (a1, 

a2, a3) can then be calculated using (35) 
 

( ) 1 2

2
⎛ ⎞+

= ⎜ ⎟⎜ ⎟
⎝ ⎠

% %

%
a aE EEV a      (35) 

 
Constraints change based on the type of inequality. 

The ‘satisfy core demand’ and ‘not surpass forecasted 
demand’ constraints affected in the retailers’ model are in 
form of less than or equal, and greater than or equal con-
straints respectively which change as follows (36)-(37). 

 
( ) ( )2 1 2 11 1⎡ ⎤≥ → − + ≥ + −⎣ ⎦

b bax b E E x E Eα αα α α α     (36) 

( ) ( )1 2 1 21 1⎡ ⎤≤ → − + ≤ + −⎣ ⎦
b bax b E E x E Eα αα α α α   (37) 

 
Where [0, 1]∈α  is a parameter set by the decision maker. 
The jktF  parameter in the objective function will be re-
placed with the expected value, so that the model is also 
generally valid. The new fuzzy retailers’ model is thus 
re-formulated as: 

 
Parameters: 
α  = degree of feasibility parameter set by decision 

maker 
(1 ),= −τ α  complement of degree of feasibility parameter 

set by decision maker 
~

1 2 3( , , ) ,= jktjktE E E E  demand for item k at retailer j in pe-
riod t that must be filled 

~
1 2 3( , , ) ,= jktjktF f f f  total forecast demand for item k at 

retailer j in period t that must be filled 
jktSi = offered supply quantity of item k to ret: j in period t 

first  iteration  it  is  infinite
then, recevied  from  plants
⎧
⎨
⎩

 

 
Decision variable: 

jktq = quantity of item k requested from plants by retailer j 
in period t 

r
jkta = level of inventory of item k at retailer j in period t 

 
Model: 

1( )− + −∑∑ ∑ ∑r r
jk jkt ijkt jkt

j k t i
Max p a q j a  (38) 

1 2 2 3
1 1 1 1(( ( )
4 4 4 4

− + + + +∑∑∑ ∑∑∑r r
jk jkt jk

j k t j k t
h a v F F F F

1( ))−− +r
jkt ijkta q j  

1 2 3 1 2
1 1 1 1
2 2 2 2−

⎛ ⎞+ − ≥ + + +⎜ ⎟
⎝ ⎠

∑r r
jkt ijkt jkt

i
a qj a E E E Eα α γ γ  

, ,∀ ∀ ∀j t k  (39) 

1 1 2 2 3
1 1 1 1
2 2 2 2−

⎛ ⎞+ − ≤ + + +⎜ ⎟
⎝ ⎠

∑r r
jkt ijkt jkt

i
a qj a F F F Fα α γ γ  

 , ,∀ ∀ ∀j t k  (40) 
≤jkt jktq si           , ,∀ ∀ ∀j t k  (41) 

≤∑ r r
jkt j

k
a w          ,∀ ∀j t  (42) 

≤jkt jktq sj           , ,∀ ∀ ∀j t k  (43) 

0 0=r
jka             ,∀ ∀j k  (44) 

{ }, 0 +∈ ∪r
jkt jktq a Z    , ,∀ ∀ ∀j k t  (45) 

4.2 Werners’ Approach (Werners, 1987) 

Werners (1987) introduced an interactive general 
system which supports a decision maker in solving pro-
gramming models with fuzzy constraints and crisp goals. 
In the Werner’s approach fuzzy constraints were con-
verted to crisp constraints by linear membership func-
tions. More details can be found in Werners (1987). 

Solving the following LP problems a membership 
function for the objective function is built. 

 
LP (b) 

tMaxC x  
Such that 1, 2, ,≤ = Li iA x b i m   0≥x  (46) 
LP (b+p) 

tMaxC x  
Such that 1, 2, ,≤ + = Li i iA x b p i m  0≥x  (47) 
 
Whereas before pi’s the maximum tolerances from 

bi Which are determined by decision makers for them 
constraints of “type 1 FLP.” Let z0 and z1 be the optimal 
values of LP (b) and LP (b+p) respectively. 

Continuously nondecreasing linear memberships 
function for objective function by using z0 and z1 are as 
follows: 

 

1

1
0 0 1

1 0

0

1

( ) 1

0

⎧ >
⎪
⎪ −

= − ≤ ≤⎨
−⎪

⎪ <⎩

T

T
T T

T

c x z

z c xc x z c x z
z z

c x z

μ  (48) 

 
The membership functions of the constraints are 

the same as before, linearly decreasing over the toler-
ance interval pi 

 

0

1

( ) 1

0

⎧ >
⎪

−⎪= − ≤ ≤⎨
⎪
⎪ < +⎩

i i

T i i
i i i

i

i i i

A x b
A x bc x b A x b

p
A x b p

μ   (49)  

 
By using ( 0, 1, 2, , )= Li i mμ  and Bellman and Zadeh 
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principle in decision making, the “type 1 FLP” is equi-
valent to the following crisp LP problem: 

 
Max α  

( ) , 1, 2, ,≥ = Li x i mμ α  
[0, 1], 0∈ ≥xα  (50)  

Which on substitution for  
 
Max α  

1 1 0(1 )( )> − − −tC x z z zα  
(1 ) , 1, 2, ,≤ + − = Li i iA x b p i mα  (51)  

[0, 1], 0∈ ≥xα  
 

The new fuzzy retailers’ model is thus formulated as: 
 
Parameters: 

~
jktE = Fuzzy demand for item k at retailer j in period t 

that must be filled 
~

jktF = Fuzzy total forecast demand for item k at retailer j in 
period t 

jktSi = offered supply quantity of item k to ret: j in period t 

first  iteration  it  is  infinite
then,  recevied  from  plants
⎧
⎨
⎩

 

[0, 1]∈α  and 1= −B α  
 
Decision variable; 

jktq = quantity of item k requested from plants by retailer j 
in period t 

r
jkta = level of inventory of item k at retailer j in period t 

 
With 1 2, 20=p p  the right margin and 141225 is 

upper bounded of objective function that allowed by the 
decision maker. The auxiliary parametric integer pro-
gramming problem is:  

 
Model: 

 Min B  (52) 
1 20− + − ≤ +∑r r

jkt ijkt jkt jkt
i

a q j a F B  , ,∀ ∀ ∀j t k  (53) 

1 20− + − ≥ −∑r r
jkt ijkt jkt jkt

i

a q j a E B  , ,∀ ∀ ∀j t k  (54) 

1( ) ((− + − −∑∑ ∑ ∑ ∑∑∑r r r r
jk jkt ijkt jkt jk jkt

j k t i j k t
p a qj a h a  (55) 

1( ( )) 125 5 10510B−+ − − −+ ≥∑∑∑ ∑r r
jk jkt jkt ijkt jkt

j k t i
v F a qj a  

[0,1]∈B  (56) 
≤jkt jktq si  , ,∀ ∀ ∀j t k  (57) 

≤∑ r r
jkt j

k
a w  ,∀ ∀j t  (58) 

≤jkt jktq sj  , ,∀ ∀ ∀j t k  (59) 

0 0=r
jka  ,∀ ∀j k  (60) 

{ }, 0 +∈ ∪r
jkt jktq a Z  , ,∀ ∀ ∀j k t  (61) 

4.3 Tan and Cao’s Approach (Tan and Cao, 2005) 

The classical LP problem is stated model (62). 
 

tMaxC x  
( 1, , )≤ = Li iA x b i m  (62) 

0≥x  
 
Where A, b and c are crisp numbers. In most of the 

cases it is not possible to describe the constraints and the 
objective function in crisp terms and therefore usage of 
fuzzy linear programming offers the advantage that the 
decision maker can model the problem in accordance to 
the current state of information. In this approach fuzzy 
constraints are converted to crisp constraints by linear 
membership functions. By associating an objective func-
tion with an optimal value of parametric programming 
Tan and Cao (2005) defined a normal form of Fuzzy LP 
as model (63). 

 
LP (α) 

tMaxC x  
Such that 

(1 ) , 1, 2, , , 0, [0, 1]≤ + − = ≥ ∈Li i iA x b p i m xα α  (63) 
 
Where α  is a parameter on the interval [0, 1], and 

0.≥p xα  indicates the optimal solution to ( LPα ), Bα  and 
zα  the optimal basis vector and the optimal value of ,LPα  
respectively. The right hand side coefficient (1 )+ −b pα  
of the constraint condition in LPα  will vary with the 
changing of parameter .α  
Let 1z  be an optimal value of 1LP  and 0z  be an optimal 
value of 0,LP 0 0 1 0= − >p z z  
 
Base on the above descriptions, Tan and Cao (2005) 
algorithm is summarized as follows: 
 
Step 1. Solve linear programming problems ( 1LP ) And 

( 0LP ). 
Let the associated optimal solutions be 0x  and 1,x  the 
optimal values be 0z  and 1,z  and the optimal matrix of 

0LP  be 0B  
 
Step 2. Solve 

1
0 ( (1 ) 0−⎡ ⎤+ − =⎣ ⎦i

B b pα  (64)  

Assume the solutions (65). 
1 1 1 1, , , (0 1)− −< < < <L Ln nα α α α   (65) 

Let 0 0,=α  11, , 1= = =n kα α α   (66) 
 
Step 3. Solve ( LPα ) 
Let the optimal value be .zα  If 1 0≤ +z z pα α  go to Step 
4, otherwise let 1,= + = kk k α α  go to step 3. 
 
Step 4. Set the optimal alpha-level using (67) 

α* = 1

1

1 1 1 1

0 1 0

−

−

− −

−

⋅ − ⋅ − ⋅ + ⋅

− − ⋅ + ⋅
k k

k k

k k k k

k k

z z z z
z z p p

α α

α α

α α α α
α α

   (67)  
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Step 5. Solve linear programming *,LPα  and obtain op-
timal solution *xα  and an optimal value *.zα  

 
Let C be the constraint on domain X, where =cα  

{ }, ( ) .∈ ≥x x X C x α  The fuzzy objective function can be 
defined as 1 0 .= + ⋅z z pα α  So we can use the intersection 
of the fuzzy objective function 1 0= + ⋅z z pα α  and =zα  

1( (1 ) )−⋅ + −BC B b pα α α  to find an optimal decision of LP. 
Setting 1 210, 20= =p p  as the right margin allowed 

by decision maker. The associated auxiliary parametric 
integer programming problem is: 

 
Model: 

 Max zα  (68) 

( )1 10 1− + − ≥ −∑r r
jkt ijkt jkt

i
a qj a α    , ,∀ ∀ ∀j k t  (69) 

( )1 20 1− + − ≤ −∑r r
jkt ijkt jkt

i
a qj a α    , ,∀ ∀ ∀j t k  (70) 

[ ]0,1∈α   (71) 
≤jkt jktq si                    , ,∀ ∀ ∀j t k  (72) 

≤∑ r r
jkt j

k
a w                   ,∀ ∀j t  (73) 

≤jkt jktq sj                    , ,∀ ∀ ∀j t k  (74) 

0 0=r
jka                     ,∀ ∀j k  (75) 

{ }, 0 +∈ ∪r
jkt jktq a Z            , ,∀ ∀ ∀j k t  (76) 

5.  COMPUTATIONAL RESULTS 

In this section the computational results for the 
both centralized and distributed approaches under uncer-
tainty are discussed. Four different datasets were used to 
test the efficacy and applicability of proposed approa-
ches. Three controllable parameters were chosen to be 
varied to create the different sets of benchmark instant-
ces. First, demand was given two different behaviors. 
Both had the same total demand value, but in one instance 
the demand was stable over the periods, whereas in the 
other it was very erratic, that varying from near nothing 
to high peaks. Second, production capacity was varied. 
Low capacity meant that the production capacity const-
raints were very tight, and that it was never really possi-

ble to meet all demand.  
Production/setup costs were the third parameter to 

be varied. Combinations of low unit production costs with 
high setup costs, and high unit production costs with 
low setup costs were made to change the decisions the 
manufacturer would make regarding batches. Low setup 
costs obviously encouraged smaller batches. Four com-
binations made and the data sets were generated using 
configuration presented in Table 2. 

Input data of the problems are set, without loss of 
generality, through the preliminary studies. Core demand 
is generated from a uniform distribution on [50, 70]. Fo-
recasted demand is determined by 1.5× .jktE  Capacity of 
all vehicles is set to 100. Storage capacity at a retail out-
let is set by 1, 2, , .=∑ LjktkMax E j J  

Unit selling price is determined by multiplying ikC  

by a uniform random number on [2.5, 3.5]. For the costs 
of set-up, holding at a plant and a retail outlet, and stock 
out, 300 , 0.2 , 0.1= = =p r

ik ik ik jk jkiks c h c h p  and 0.15=ik jkv p  
are assigned, respectively. Unit transportation cost is set 
to the value between 20,000 and 40,000 in proportion to 
the Euclidean distance between the two locations. Coor-
dinates of plants and retail outlets are randomly gener-
ated from a uniform distribution on [0, 10,000]. Fixed 
vehicle cost is set to 25,000. For sake of brevity the de-
tails of the created datasets are not presented. In order to 
make a better sense of data generated the full data of 
data set 1 are presented in Appendix A. 

All data sets were solved using all three fuzzy 
mathematical optimization procedures. The results of 
both centralized method (CM) and decentralized method 
(DM) for data set 3 are presented in Table 3. 

The explanation is that high setup costs may cause 
the manufacturer to not want to produce a batch of acer-
tain item, if it has enough inventory to meet the agreed 
fill rate. Some of the forecasted demand can then not be 
met, resulting in lost sales and a sub optimal solution. 
CPU times were either very short, or extremely long. 
Three of the 12 runs of the manufacturer’s model took 
49, 54 and 58s respectively. This did not occur for the 
same dataset either, which seems to suggest that some 
combinations of data make the problem more difficult to 
solve optimally. The two most important observations 
come from the iterations column. In some cases, only 
one iteration is required because it is optimal for the 
manufacturer to deliver everything that is requested. 

 
Table 2. Data used in test sets 

Demand Production Capacity Production/setup cost Data 
Sets Type Value Value Distribution Value Distribution 

i k j t

Set1 Fixed 60 Low Uniform(500, 1,000) Low Uniform(500, 1,000) 3 8 2 5
Set2 Fixed 60 Low Uniform(500, 1,000) High Uniform(105, 106) 3 8 2 5
Set3 Random Uniform(50, 70) High Uniform(1,000, 5,000) Low Uniform(500, 1,000) 3 8 2 5
Set4 Random Uniform(50, 70) High Uniform(1,000, 5,000) High Uniform(105, 106) 3 8 2 5
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This coincides with an Erratic demand behavior and 
high production capacity. Computational results illus-
trate that the proposed distributed model closely ap-
proximated the optimal solutions generated by the cen-
tralized model. 

As mentioned, Table 3 shows the comparison of 
the proposed approaches (i.e., CDM, and DDM) through 
data set 3. Regardless of the demand pattern, the combi-
nation of High in production capacity and Low/High in 
Production/ setup cost generates poor quality solutions 
in comparison with other combinations. This implies 
that high capacity tightness of the manufacturer con-
strains the feasible region for production planning and 
makes retailer that has enough distribution capacity to 
be able to choose a locally optimized coordination plan 
that might be distant from the optimal coordination plan. 

Finally, the Werner’s approach in terms of the 
number of iterations, solution time, and objective func-
tion performs better than the other two methods on four 

data sets of this study. 
In order to make a better sense of steps of proposed 

coordination mechanism between manufacturer and re-
tailers in the supply chain, the results of Jiménez (2007) 
approach for data set1are presented in Table 4. 

The content of Table 4 shows the convergence trend 
of the proposed algorithm during two iterations. As shown 
in Table 4, the coordination mechanism works suitably. 
The other data sets have followed the similar procedure 
and are not presented here for sake of brevity. 

The Jiménez et al. (2007) approach used the ex-
pected interval and expected value of a fuzzy number to 
change the fuzzy mathematical programming into a crisp 
mathematical programming. The Werners (1987) method 
calculated the membership function of objective func-
tion and constraints of fuzzy mathematical programming. 
Then, using these membership functions and the max-
min operator of bellman and Zadeh converted the fuzzy 
mathematical programming into the associated crisp ma-

Table 3. Computational results (vijk = 60% of sales price) 

Fuzzy Optimization Approach Data sets CDM* DDM** Gap Gap% Iterations CPU time (s)
1 137325 126167 11158 8.13% 2 4s 
2 140177 138699 1478 1.05% 2 4s 
3 122982 109001 13981 11.37% 1 6s 

Jiménez (2007) 

4 136242 136223 19 0.01% 3 2s 
1 116345 109907 6438 5.53% 4 18s 
2 118111 118111 0 0.00% 2 54s 
3 120871 130212 -9341 -7.73% 1 58s 

Tan and Cao (2005) 

4 144665 143770 895 0.62% 2 49s 
1 151765 141255 10510 6.93% 2 2s 
2 139234 138629 605 0.43% 1 3s 
3 149872 144332 5540 3.70% 1 1s 

Werners (1987) 

4 151765 151000 765 0.50% 2 5s 
* Centralized Decision Method (CDM). 
** Decentralized Decision Method (DDM). 

 
Table 4. Sample Results of Coordination Mechanism for Data Set 1 

 Iteration 1 Iteration 2 

Steps initial
jktSJ  jktz  jktSI jktSJ  jktE  mZ rZ Gap initial

jktSJ jktz jktSI jktSJ jktE  mZ  rZ Gap

Step 1 2578 - infinite - - - - - - - - - - - - - 
Step 2 3822.2 - - - - - - - - - - - - - - - 
Step 3 - - - - - - 37317 - - - - - - - 17380 - 
Step 4 - - 60.8 - - - - - - 0 1004.4 - - - - - 
Step 5 - 743.3 - - - - - - - 0 - - - - - - 
Step 6 - - 84.7 - - - - - - - - - - - - - 
Step 7 - - - - 100 - - - - - - - - - - - 
Step 8 - - - - - 137551 - - - - - - - 143547 - - 
Step 9 - - - - - - - 100234 - - - - - - - 126167
Step 10 - - - - 100 - - - - - - - - - - - 
Step 11 - - - 1102.2 - - - - - - - - - - - - 
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Figure 2. The Share of each channel. 

 

Jiménez et al. (2007)
Tan and Cao (2005)

Werners (1987)

0
20000
40000
60000
80000

100000
120000
140000
160000

1 2 3 4

 

Jiménez et al. (2007)
Tan and Cao (2005)

Werners (1987)

0
20000
40000
60000
80000
100000
120000
140000
160000

1 2 3 4

 
(a) Centralized method (b) Decentralized methods 

Figure 3. Objective function values for both centralized and decentralized methods. 

thematical model. The Tan and Cao (2005) approach used 
the membership value of objective function, alpha-cut of 
fuzzy variables, and tolerance approach in fuzzy mathe-
matical programming in order to convert the fuzzy ma-
thematical programming into a crisp mathematical pro-
gramming through an algorithmic approach.  

Considering coordination mechanism retailer’s pro-
fit is calculated in step 3 and Manufacturer’s cost is cal-
culated in step 7. The gap between retailer’s profit and 
Manufacturer’s cost is calculated in step 8. This gap is 
shown as DDM** in Table 3. In fact the difference be-
tween retailer’s profit and Manufacturer’s cost is called 
DDM** as total profit of decentralized decision making. 
We can calculate sharing profit according to sharing 
information by each channel. Figure 2 shows the share 
of each channel. 

As the Table 4, mZ  is Manufacturer’s cost value 
and rZ  is retailer’s profit. In the first iteration retailer’s 
profit is calculated 137,551 and Manufacturer’s cost is 
calculated 37,317 and the gap is 100,234. In the first 
iteration 64% of the total profit of decentralized decision 
making is the share of manufacturer and 37% of it is the 
share of retailer. In the second iteration the profit in-
creases and the cost decreases therefore the gap is im-
proved. 87% of the total profit of decentralized decision 
making is the share of manufacturer and 13% of it is the 
share of retailer. According to Figure 2, Table 4 and 
coordination mechanisms it can be said that as long as 
the share of manufacturer increases and retailer share 

decreases the value of jktZ  increases and therefore 
Shortage does not occur (step5). Also in Table3, for first 
data set 48% of the total gap is the share of decentral-
ized and 52% of it is the share of centralized channel. 

Figure 3 shows the Objective Function Values for 
both Centralized and Decentralized Methods for all 4 
benchmark instances. 

Three different methods were used to compare the 
solutions in centralized and decentralized situations. The 
biggest absolute gap in the objective value profit be-
tween the CM and the DM is 13,981, whilst the lowest 
gap is 0. In general, the DM looks to be performing rea-
sonably well compared to the CM, with many distrib-
uted solutions being close to the optimal solution. The 
biggest absolute gaps occur when setup costs are high in 
relation to unit production costs. This corresponds to the 
odd datasets. 

Although the results obtained from three fuzzy ma-
thematical programming models are different, as the vi-
ewpoint of these fuzzy methods are different and vari-
ability in values of outcomes are seen, but the trend of 
outcome in all of the fuzzy mathematical approaches 
(i.e., Jiménez et al. (2007), Werners (1987), and Tan and 
Cao (2005)) support a single truth about performance of 
DDM approach in comparison with CDM approach. 
This truth is plotted in Figure 4. 

Figure 4 (a) shows absolute gap% among the CDM 
and DDM approaches in supply chain for each solution 
method and each data set. As shown in Figure 4(a) the 
smallest gap is seen in second data set while solved us-
ing Tan and Cao (2005) approach. The largest gap is 
seen in third data set while solved by Jiménez et al. 
(2007) approach.  

The average gap for each solution method is repre-
sented in Figure 4(b). The average gap of all solution 
methods are similar and this shows that there is no sig-
nificant difference between three fuzzy mathematical 
programming approach while handling CDM and DDM 
approaches. Moreover, the average gap of solution me-
thods is near to 5% which is assumed as a suitable result. 
This means that the DDM and CDM approaches have 
very close results. This justify the application of propo-
sed DDM approach. 
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1 2 3 4
Jiménez (2007) 8.13% 1.05% 11.37% 0.01%
Tan and Cao (2005) 5.53% 0.00% 7.73% 0.62%

Werners 6.93% 0.43% 3.70% 0.50%
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(a) Gap analysis: all methods-all data sets 

 

Jiménez (2007) Tan and Cao (2005) Werner (1987)
Average Gap on each method 5.14% 4.49% 4.23%
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(b) Average gap: each method 

 

Data Set 1 Data Set 2 Data Set 3 Data Set 4
Average Gap on each data set 6.86% 0.50% 7.60% 0.38%
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(c) Average gap: each data set 

Figure 4. Gap Analysis between objective function of 
DDM and CDM. 

 
The average gap for each data is represented in 

Figure 4(c). The average gap of data set 2 and data set 4 
are very small while average gap of data set 1 and data 
set 3 are close to 7%. The overall results illustrate that 
there is no significant difference between performance 
of CDM and DDM approaches while different data sets 
are used. 

The main results concluded based on Figure 4 is 
that the DDM approach has a suitable and acceptable 
performance in comparison with CDM approach while 
the work load of the central unit in supply chain is inter-
estingly reduced and the manufacturer and retailers can 
make the associated decisions independently through 
proposed coordination mechanism. 

6.  CONCLUSION REMARKS AND FUTURE 
RESEARCH DIRECTIONS 

Optimization methods which enable collaborative 
decision making among the various levels of supply 
chain (i.e., suppliers, manufacturers, wholesalers, dis-
tributors, and retailers) are becoming increasingly more 
necessary in the present competitive environment. As a 
matter of fact, supply chain is the upstream fraction of 
the value chain activities. Also decision making ap-
proaches play significant role in this case. Hence, De-
centralized/ Distributed Decision Making (DDM) ap-
proach has become a very critical issue towards efficient 
supply chain management. In DDM approach each level 
of supply chain may take the associated decisions inde-
pendently while the management of the chain just facili-
ties the co-ordination of the levels. In such situation, the 
workload of the central unit in supply chain is interest-
ingly reduced while the levels have a certain amount of 
independency. Moreover, the reliability of supply chain 
will increased in DDM approach in comparison with 
CDM approach, as the central unit is not directly re-
sponsible for all decisions made, but it supervise and 
ease the decisions made. In contrast, the CDM approach 
all decisions are made in central unit and distributed 
among the levels, so failure of central unit means the 
failure of all or the main parts of the chain. Although it 
is notable that the integration and consistency of deci-
sion made in CDM approach cannot be neglected while 
the independency of DDM approach may cause some 
inconsistency in chain. The main question is that whe-
ther there is a possibility to propose an approach which 
inherits the advantages of both DDM and CDM ap-
proaches, i.e., the distributed work load and independent 
decision from DDM and consistency and integration 
form CDM? Moreover, as it is known, in real life supply 
chain problems several parameters of the chain may 
involve with a notable amount if uncertainty.  

In this research a deterministic CDM approach was 
extended into uncertain situation. The uncertain CDM 
approach was modeled using fuzzy mathematical pro-
gramming. Then, a DDM approach including manufac-
turer’s model and retailers’ model, were developed. In 
order to take the advantages of a CDM approach in the 
proposed DDM approach a coordination mechanism was 
attached. On the other hand, the DCM approach and the 
associated optimization models were equipped through a 
coordination mechanism developed among manufactur-
ers and retailers. Both approaches, i.e., CDM and DDM, 
were developed to handle demand uncertainty by apply-
ing possibility theory parameterized through fuzzy sets. 
Finally, three fuzzy mathematical optimization proce-
dures were proposed to solve the numerical example of 
both CDM and DDM approaches. The results were dis-
cussed and comparison was made on the results of cen-
tralized and decentralized models. 
 
The main contribution of this research are as follows:  
1) proposing a DDM approach for a multi-product sup-
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ply chain planning problem while the production and 
distribution problems in supply chain are addressed 
independently in manufacturer and retailers; 

2) Extension of both CDM and DDM approaches in 
presence of demand uncertainty using fuzzy sets; 

3) Introducing a coordination mechanism in the propo-
sed DDM approach in order to handle problems re-
lated to production and distribution in a two-echelon 
supply chain network through a decentralized ap-
proach and in order to utilize the benefits of a CDM 
approach while using DDM approach; 

3) Modeling the aforementioned problem through fuzzy 
mathematical programming; 

4) Comparing the performance of proposed DDM and a 
customized uncertain CDM approach on multi-pro-
duct supply chain planning; 

5) Applying three fuzzy mathematical optimization me-
thods in order to address and compare the perform-
ance of both DDM and CDM approaches. 
 
Moreover, one of the main contributions of the de-

veloped application is that it enables to show an insight-
ful tool for decision makers dealing with uncertainty. 
One of the goals of this research was to illustrate how a 
proposed DDM for a supply chain planning problem 
under uncertainty can obtain solutions very close to 
those obtained by the centralized model. The results of 
these study showed that the DDM approach can present 
qualified solutions in comparison wit the solutions gen-
erated by CDM solutions while the managers utilize the 
benefits of a DDM approach for decision making in 
uncertain situations. 

 
The main limitation and assumptions of these study are 
listed as below: 
1) The coordination mechanism in this study was orga-

nized for a two echelon supply chain including pro-
duction and distribution process, this may be exten-
ded for three or more echelons in future researches. 

2) The uncertainty was considered in demand of the 
chain, while other parameters of the chains may have 
considerable amount of uncertainty. This can be con-
duct a future research. 

3) They uncertainty was modeled through possibility 
set theory (i.e., fuzzy sets) parameterized through 
fuzzy numbers. Other types of uncertainty, including 
probabilistic theory or interval data can be investi-
gated in future research works. 

4) As a new concepts, i.e., equipment of DDM ap-
proach using a coordination mechanism under un-
certainty in order to utilize advantages of both DDM 
and CDM approaches, were considered in this re-
search, so a numerical example was investigated. In 
the future work, a real case study can be used in or-
der to test the applicability of proposed approach. 
 
It is expected that when the size of the numericalin-

stance grows, the CPU time of proposed solution ap-

proaches will be greater. The application of metaheuris-
tics approaches and other soft computing techniques 
could be investigated by further research in order to 
consider large scale instances. Furthermore, other pa-
rameters, such as costs could be taken into consideration 
in uncertain environment. 
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Appendix A: Simulated Data Set 1 

Parameters regarding plants and items  

 1=k  2=k  

 ikc  iks  iko  iku  p
ikh  ikγ  ikc  iks  iko  iku  p

ikh  ikγ  

1=i  50 1500 101.4 24.2 10 1 70 2100 190.3 23.1 14 1 
2=i  55 1650 160.5 6.8 11 1 75 2250 153.9 19.3 15 1 
3=i  60 1800 130.0 14.8 12 1 80 2400 186.1 28.4 16 1 

 
Parameters regarding retailers and items  

 1=k  2=k  

 jkp  r
jkh  jkv  jkp  r

jkh  jkv  

1=j  1765 176.5 264.75 1084 108.4 162.6 
2=j  1654 165.4 248.1 1873 187.3 280.95 

 
Parameters regarding demand of items in planning periods 

 1=t  2=t  3=t  4=t  5=t  
 jktE  jktF  jktE  jktF  jktE  jktF  jktE  jktF  jktE  jktF  

1, 1= =j k  154.2 231.3 123.5 185.25 94.4 141.6 48.4 72.6 176.3 264.45
1, 2= =j k  67.2 100.8 184.3 276.45 146.7 220.05 167.5 251.25 152.0 228 
2, 1= =j k  158.9 238.35 100.1 150.15 54.1 81.15 130.5 195.75 77.5 116.25
2, 2= =j k  54.2 81.3 33.7 50.55 174.8 268.2 63.5 95.25 110.7 166.05
 

Parameter regarding unit transportation cost of items between plants and retailers 

ijkd  1=k  2=k  
1, 1= =i j  2376.3 3720.2 
2, 1= =i j  2784.6 2876.3 
3, 1= =i j  2567.7 2984.9 
1, 2= =i j  2387.3 3982.6 
2, 2= =i j  3093.4 3401 
3, 2= =i j  3937.5 3743.5 

Note: Inventory capacity at a retail outlet is set by 1, 2, ,= =∑ Lr
j t jkttw Max E j j (i.e., 1 2328.3, 228.9)= =r rw w  Core demand is gener-

ated from a uniform distribution on [0, 200]. Forecasted demand is determined by 1.5 .× jktE  Capacity of all vehicles is set to 200. 

Fixed cost per vehicle is set to 2,500. For the costs of set-up, holding at a plant and a retail outlet, and stock out, 0.2 ,=p
ikikh c  =r

jkh  
0.1 jkp  and 0.15=jk jkv p  are assigned, respectively. Processing time for item k at plant i is generated from a uniform distribution on 
[100, 200]. Setup time for item k at plant i is generated from a uniform distribution on [0, 30]. Unit selling price of item k at retailer j is 
generated from a uniform distribution on [1,000, 2,000]. 
 


