• Title/Summary/Keyword: Fuzzy Input Partition

Search Result 44, Processing Time 0.038 seconds

Automatic design of fuzzy controller using genetic algorithms (유전 알고리즘을 이용한 퍼지 제어기의 자동설계)

  • 김대진;홍정철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.138-151
    • /
    • 1996
  • This paper proposes a genetic fuzzy controller ensemble (FCE) for improving the control performance of of fuzzy controller in the non-linear and complex problems. The design procedure of each fuzzy controller in the FCF consists of the following two stages, each of which is performed by different genetic algorithms. The first stage generates a fuzzy rule base that covers the training examples as many as possible. The second stage builds fine-tuned membership funcitons that make the control error as small as possible. These two stages are repeated independently upon the different partition patterns of input-output variables. The control performance of the proposed method is compared with that of wang and mendel's approach[1] in terms of either the percentage of successful controls reaching to the goal or the average traveling distance.

  • PDF

Building a Fuzzy Model with Transparent Membership Functions through Constrained Evolutionary Optimization

  • Kim, Min-Soeng;Kim, Chang-Hyun;Lee, Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.298-309
    • /
    • 2004
  • In this paper, a new evolutionary scheme to design a TSK fuzzy model from relevant data is proposed. The identification of the antecedent rule parameters is performed via the evolutionary algorithm with the unique fitness function and the various evolutionary operators, while the identification of the consequent parameters is done using the least square method. The occurrence of the multiple overlapping membership functions, which is a typical feature of unconstrained optimization, is resolved with the help of the proposed fitness function. The proposed algorithm can generate a fuzzy model with transparent membership functions. Through simulations on various problems, the proposed algorithm found a TSK fuzzy model with better accuracy than those found in previous works with transparent partition of input space.

Fast Fuzzy Inference Algorithm for Fuzzy System constructed with Triangular Membership Functions (삼각형 소속함수로 구성된 퍼지시스템의 고속 퍼지추론 알고리즘)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Almost applications using fuzzy theory are based on the fuzzy inference. However fuzzy inference needs much time in calculation process for the fuzzy system with many input variables or many fuzzy labels defined on each variable. Inference time is dependent on the number of arithmetic Product in computation Process. Especially, the inference time is a primary constraint to fuzzy control applications using microprocessor or PC-based controller. In this paper, a simple fast fuzzy inference algorithm(FFIA), without loss of information, was proposed to reduce the inference time based on the fuzzy system with triangular membership functions in antecedent part of fuzzy rule. The proposed algorithm was induced by using partition of input state space and simple geometrical analysis. By using this scheme, we can take the same effect of the fuzzy rule reduction.

Fuzzy Inference Systems Based on FCM Clustering Algorithm for Nonlinear Process (비선형 공정을 위한 FCM 클러스터링 알고리즘 기반 퍼지 추론 시스템)

  • Park, Keon-Jun;Kang, Hyung-Kil;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.224-231
    • /
    • 2012
  • In this paper, we introduce a fuzzy inference systems based on fuzzy c-means clustering algorithm for fuzzy modeling of nonlinear process. Typically, the generation of fuzzy rules for nonlinear processes have the problem that the number of fuzzy rules exponentially increases. To solve this problem, the fuzzy rules of fuzzy model are generated by partitioning the input space in the scatter form using FCM clustering algorithm. The premise parameters of the fuzzy rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the coefficient parameters of each rule are determined by the standard least-squares method. And lastly, we evaluate the performance and the nonlinear characteristics using the data widely used in nonlinear process.

Fuzzy Neural System Modeling using Fuzzy Entropy (퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링)

  • 박인규
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.2
    • /
    • pp.201-208
    • /
    • 2000
  • In this paper We describe an algorithm which is devised for 4he partition o# the input space and the generation of fuzzy rules by the fuzzy entropy and tested with the time series prediction problem using Mackey-Glass chaotic time series. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rules base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. The Proposed algorithm has been naturally derived by means of the synergistic combination of the approximative approach and the descriptive approach. Each output of the rule's consequences has expressed with its connection weights in order to minimize the system parameters and reduce its complexities.

  • PDF

APPROXIMATIVE INFERENCE IN HIERARCHICAL STRUCTURED RULE BASES

  • Koczy, Laszlo T.;Hirota, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1262-1265
    • /
    • 1993
  • The paper discusses the problem of controlling systems with a very high number of input variables effectively by fuzzy If . . . then rules. The basic idea is the partition of the state space into domains, which step can be done even iteratively several times, and every domain has its own sub rule base referring to a considerably lower number of variables than the original space. In this manner the number of necessary rules is drastically reduced and time complexity of the control algorithm remains acceptable.

  • PDF

A Study on the Prediction of the Nonlinear Chaotic Time Series Using Genetic Algorithm based Fuzzy Neural Network (유전 알고리즘을 이용한 퍼지신경망의 시계열 예측에 관한 연구)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.91-97
    • /
    • 2011
  • In this paper we present an approach to the structure identification based on genetic algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy-genetic hybrid system in order to predicate the Mackey-Glass Chaotic time series. In this scheme the basic idea consists of two steps. One is the construction of a fuzzy rule base for the partitioned input space via genetic algorithm, the other is the corresponding parameters of the fuzzy control rules adapted by the backpropagation algorithm. In an attempt to test the performance the proposed system, three patterns, x(t-3), x(t-6) and x(t-9), was prepared according to time interval. It was through lots of simulation proved that the initial small error of learning owed to the good structural identification via genetic algorithm. The performance was showed in Table 2.

Iterative SAR Segmentation by Fuzzy Hit-or-Miss and Homogeneity Index

  • Intajag Sathit;Chitwong Sakreya;Tipsuwanporn Vittaya
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.111-114
    • /
    • 2004
  • Object-based segmentation is the first essential step for image processing applications. Recently, SAR (Synthetic Aperture Radar) segmentation techniques have been developed, however not enough to preserve the significant information contained in the small regions of the images. The proposed method is to partition an SAR image into homogeneous regions by using a fuzzy hit-or-miss operator with an inherent spatial transformation, which endows to preserve the small regions. In our algorithm, an iterative segmentation technique is formulated as a consequential process. Then, each time in iterating, hypothesis testing is used to evaluate the quality of the segmented regions with a homogeneity index. The segmentation algorithm is unsupervised and employed few parameters, most of which can be calculated from the input data. This comparative study indicates that the new iterative segmentation algorithm provides acceptable results as seen in the tested examples of satellite images.

  • PDF

Genetically Optimized Hybrid Fuzzy Neural Networks Based on Linear Fuzzy Inference Rules

  • Oh Sung-Kwun;Park Byoung-Jun;Kim Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.183-194
    • /
    • 2005
  • In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.

Intelligent Methods to Extract Knowledge from Process Data in the Industrial Applications

  • Woo, Young-Kwang;Bae, Hyeon;Kim, Sung-Shin;Woo, Kwang-Bang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.194-199
    • /
    • 2003
  • Data are an expression of the language or numerical values that show some features. And the information is extracted from data for the specific purposes. The knowledge is utilized as information to construct rules that recognize patterns or make a decision. Today, knowledge extraction and application of that are broadly accomplished for the easy comprehension and the performance improvement of systems in the several industrial fields. The knowledge extraction can be achieved by some steps that include the knowledge acquisition, expression, and implementation. Such extracted knowledge is drawn by rules with data mining techniques. Clustering (CL), input space partition (ISP), neuro-fuzzy (NF), neural network (NN), extension matrix (EM), etc. are employed for the knowledge expression based upon rules. In this paper, the various approaches of the knowledge extraction are surveyed and categorized by methodologies and applied industrial fields. Also, the trend and examples of each approaches are shown in the tables and graphes using the categories such as CL, ISP, NF, NN, EM, and so on.