• Title/Summary/Keyword: Fuzzy Index

Search Result 328, Processing Time 0.022 seconds

Design of Optimized Multi-Fuzzy Controllers for Air-Conditioning System with Multi-Evaporators (다중 증발기를 갖는 에어컨시스템에 대한 최적화된 Multi-Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • In this paper, we introduce an approach to design multi-fuzzy controllers for the superheat and the low pressure that have an influence on energy efficiency and stabilization of aft conditioning system. Air conditioning system is composed of compressor, condenser several evaporators and several expansion valves. It is quite difficult to control the air conditioning system because the change of the refrigerant condition give an impact on the overall air conditioning system. In order to solve the drawback, we design multi-fuzzy controllers which control simultaneously both three expansion valve and one compressor for the superheat and the low pressure of air conditioning system. The proposed multi fuzzy controllers are given as two kinds of controller types such as a continuous simplified fuzzy inference type and a discrete fuzzy lookup_table type. Here the scaling factors of each fuzzy controller ate efficiently adjusted by veal coding type Genetic Algorithms. The values of performance index of the conventional type are compared with the simulation results of discrete lookup_table type and continuous simplified inference type.

Design of a Neuro-Fuzzy System Using Union-Based Rule Antecedent (합 기반의 전건부를 가지는 뉴로-퍼지 시스템 설계)

  • Chang-Wook Han;Don-Kyu Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.13-17
    • /
    • 2024
  • In this paper, union-based rule antecedent neuro-fuzzy controller, which can guarantee a parsimonious knowledge base with reduced number of rules, is proposed. The proposed neuro-fuzzy controller allows union operation of input fuzzy sets in the antecedents to cover bigger input domain compared with the complete structure rule which consists of AND combination of all input variables in its premise. To construct the proposed neuro-fuzzy controller, we consider the multiple-term unified logic processor (MULP) which consists of OR and AND fuzzy neurons. The fuzzy neurons exhibit learning abilities as they come with a collection of adjustable connection weights. In the development stage, the genetic algorithm (GA) constructs a Boolean skeleton of the proposed neuro-fuzzy controller, while the stochastic reinforcement learning refines the binary connections of the GA-optimized controller for further improvement of the performance index. An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation and experiment.

Image Analysis Fuzzy System

  • Abdelwahed Motwakel;Adnan Shaout;Anwer Mustafa Hilal;Manar Ahmed Hamza
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.163-177
    • /
    • 2024
  • The fingerprint image quality relies on the clearness of separated ridges by valleys and the uniformity of the separation. The condition of skin still dominate the overall quality of the fingerprint. However, the identification performance of such system is very sensitive to the quality of the captured fingerprint image. Fingerprint image quality analysis and enhancement are useful in improving the performance of fingerprint identification systems. A fuzzy technique is introduced in this paper for both fingerprint image quality analysis and enhancement. First, the quality analysis is performed by extracting four features from a fingerprint image which are the local clarity score (LCS), global clarity score (GCS), ridge_valley thickness ratio (RVTR), and the Global Contrast Factor (GCF). A fuzzy logic technique that uses Mamdani fuzzy rule model is designed. The fuzzy inference system is able to analyse and determinate the fingerprint image type (oily, dry or neutral) based on the extracted feature values and the fuzzy inference rules. The percentages of the test fuzzy inference system for each type is as follow: For dry fingerprint the percentage is 81.33, for oily the percentage is 54.75, and for neutral the percentage is 68.48. Secondly, a fuzzy morphology is applied to enhance the dry and oily fingerprint images. The fuzzy morphology method improves the quality of a fingerprint image, thus improving the performance of the fingerprint identification system significantly. All experimental work which was done for both quality analysis and image enhancement was done using the DB_ITS_2009 database which is a private database collected by the department of electrical engineering, institute of technology Sepuluh Nopember Surabaya, Indonesia. The performance evaluation was done using the Feature Similarity index (FSIM). Where the FSIM is an image quality assessment (IQA) metric, which uses computational models to measure the image quality consistently with subjective evaluations. The new proposed system outperformed the classical system by 900% for the dry fingerprint images and 14% for the oily fingerprint images.

Performance Index-Based Evaluation of Quadruped RoboticWalking Configuration

  • Kim, Byoung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.308-313
    • /
    • 2010
  • This paper presents a performance index-based evaluation for a better quadruped robotic walking configuration. For this purpose, we propose a balance-based performance index that enables to evaluate the walk configuration of quadruped robots in terms of balance. In order to show the effectiveness the proposed performance index, we consider some types of walking configurations for a quadruped robotic walking and analyze the trend of the proposed performance index in those quadrupedal walking. Through the simulation study, it is shown that an effective walk configuration for a quadrupedal walking can be planned by adopting the proposed performance index.

A fuzzy cluster validity index for the evaluation of Fuzzy C-Means algorithm (최적 클러스터 분할을 위한 FCM 평가 인덱스)

  • 김대원;이광현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.374-376
    • /
    • 2003
  • 본 논문에서는 Fussy C-Means (FCM) 알고리즘에 의해 계산된 퍼지 클러스터들에 대한 평가 인덱스를 제안한다. 제안된 인덱스는 퍼지 클러스터들간의 인접성(inter-cluster proximity)을 이용한다. 클러스터 인접성을 도입함으로써 클러스터간의 중첩 정도를 계산할 수 있다. 따라서, 인접성 값이 낮을수록 클러스터들은 공간에 잘 분포하게 됨을 알 수 있다. 다양한 데이터 집합에 대한 실험을 통해서 제안된 인덱스의 효율성과 신뢰성을 검증하였다.

  • PDF

Multi-Criteria decision making based on fuzzy measure

  • Sun, Yan;Feng, Di
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.2
    • /
    • pp.19-25
    • /
    • 2013
  • Decision procedure was done with the evaluation of multi-criterion analysis. Importance of each criterion was considered through heuristically method, specially it was based on the heuristic least mean square algorithm. To consider coalition evaluation, it was carried out by calculation of Shapley index and Interaction value. The model output is also analyzed with the help of those two indexes, and the procedure was also displayed with details. Finally, the differences between the model output and the desired results are evaluated thoroughly, several problems are raised at the end of the example which require for further studying.

  • PDF

The Hybrid Multi-layer Inference Architectures and Algorithms of FPNN Based on FNN and PNN (FNN 및 PNN에 기초한 FPNN의 합성 다층 추론 구조와 알고리즘)

  • Park, Byeong-Jun;O, Seong-Gwon;Kim, Hyeon-Gi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.378-388
    • /
    • 2000
  • In this paper, we propose Fuzzy Polynomial Neural Networks(FPNN) based on Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FPNN is generated from the mutually combined structure of both FNN and PNN. The one and the other are considered as the premise part and consequence part of FPNN structure respectively. As the consequence part of FPNN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. FPNN is available effectively for multi-input variables and high-order polynomial according to the combination of FNN with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. As the premise part of FPNN, FNN uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. And we use two kinds of FNN structure according to the division method of fuzzy space of input variables. One is basic FNN structure and uses fuzzy input space divided by each separated input variable, the other is modified FNN structure and uses fuzzy input space divided by mutually combined input variables. In order to evaluate the performance of proposed models, we use the nonlinear function and traffic route choice process. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously. And also performance index related to the approximation and prediction capabilities of model is evaluated and discussed.

  • PDF

Fuzzy reliability analysis of laminated composites

  • Chen, Jianqiao;Wei, Junhong;Xu, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.665-683
    • /
    • 2006
  • The strength behaviors of Fiber Reinforced Plastics (FRP) Composites can be greatly influenced by the properties of constitutive materials, the laminate structures, and load conditions etc, accompanied by many uncertainty factors. So the reliability study on FRP is an important subject of research. Many achievements have been made in reliability studies based on the probability theory, but little has been done on the roles played by fuzzy variables. In this paper, a fuzzy reliability model for FRP laminates is established first, in which the loads are considered as random variables and the strengths as fuzzy variables. Then a numerical model is developed to assess the fuzzy reliability. The Monte Carlo simulation method is utilized to compute the reliability of laminas under the maximum stress criterion. In the second part of this paper, a generalized fuzzy reliability model (GFRM) is proposed. By virtue of the fact that there may exist a series of states between the failure state and the function state, a fuzzy assumption for the structure state together with the probabilistic assumption for strength parameters is adopted to construct the GFRM of composite materials. By defining a generalized limit state function, the problem is converted to the conventional reliability formula that enables the first-order reliability method (FORM) applicable in calculating the reliability index. Several examples are worked out to show the validity of the models and the efficiency of the methods proposed in this paper. The parameter sensitivity analysis shows that some of the mean values of the strength parameters have great influence on the laminated composites' reliability. The differences resulting from the application of different failure criteria and different fuzzy assumptions are also discussed. It is concluded that the GFRM is feasible to use, and can provide an effective and synthetic method to evaluate the reliability of a system with different types of uncertainty factors.

A Study on Efficiency and Productivity Analysis of Mokpo Port -DEA model and FCM combined analysis- (목포항의 효율성 및 생산성 분석에 관한 연구 -DEA모형과 FCM을 결합분석법-)

  • Kim, Sam-Youl;Choi, Kyoung-Hoon;Pham, Thi Quynh Mai
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.1
    • /
    • pp.183-196
    • /
    • 2020
  • Until now, there have been few studies analyzing the efficiency of the Port of Mokpo and comparing it with other seaports in the country to identify the future direction of development for the port. In this paper, we use the data envelopment analysis (DEA) model in combination with the Malmquist Productivity Index (MPI) to measure the efficiency and productivity of major ports in Korea, focusing on the Port of Mokpo. First, the study identifies which ports are efficient or inefficient based on technical or operational scale. Second, by using the MPI to overcome the shortfalls of the DEA model, the study can compare a port's performance across the years and evaluate the productivity of a port during the research period. Moreover, this study also applies fuzzy C-means (FCM) clustering to classify port groups based on the size of their infrastructure and their efficiency scores. Finally, it is possible to find ways to enhance the efficiency and future direction of development of the Port of Mokpo.

Risk assessment of karst collapse using an integrated fuzzy analytic hierarchy process and grey relational analysis model

  • Ding, Hanghang;Wu, Qiang;Zhao, Dekang;Mu, Wenping;Yu, Shuai
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.515-525
    • /
    • 2019
  • A karst collapse, as a natural hazard, is totally different to a normal collapse. In recent years, karst collapses have caused substantial economic losses and even threatened human safety. A risk assessment model for karst collapse was developed based on the fuzzy analytic hierarchy process (FAHP) and grey relational analysis (GRA), which is a simple and effective mathematical algorithm. An evaluation index played an important role in the process of completing the risk assessment model. In this study, the proposed model was applied to Jiaobai village in southwest China. First, the main controlling factors were summarized as an evaluation index of the model based on an investigation and statistical analysis of the natural formation law of karst collapse. Second, the FAHP was used to determine the relative weights and GRA was used to calculate the grey relational coefficient among the indices. Finally, the relational sequence of evaluation objects was established by calculating the grey weighted relational degree. According to the maximum relational rule, the greater the relational degree the better the relational degree with the hierarchy set. The results showed that the model accurately simulated the field condition. It is also demonstrated the contribution of various control factors to the process of karst collapse and the degree of collapse in the study area.