• Title/Summary/Keyword: Future Prediction

Search Result 1,811, Processing Time 0.031 seconds

Analysis of Determinants of Farmland Price Using Spatio-temporal Autoregressive Model (시공간자기회귀모형을 이용한 농지가격 결정요인 분석)

  • Lee Kyeongok;Yi, Hyangmi;Kim, Yunsik;Kim Taeyoung
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • Farmland transaction prices are affected by various factors such as politics, society, and the economy. The purpose of this study is to identify multiple factors that affect the farmland transaction price due to changes in the actual transaction price of farmland by farmland unit from 2016 to 2020. There are several previous studies analyzed the determinants of farmland transaction prices by considering spatial dependency. However, in the case of land transactions where the time and space of the transaction affect simultaneously, if only spatial dependence is considered, there is a limitation in that it cannot reflect spatial dependence that occurs over time. In order to solve these limitations, To address these limitations, this study builds a spatio-temporal autoregressive model that simultaneously considers spatial and temporal dependencies using farmland transactions in Jinju City as an example. As a result of the analysis, it was confirmed that there was significant spatio-temporal dependence in farmland transactions within the previous 30 days. This means that if the previous farmland transaction was carried out at a high price, it has a spatio-temporal spillover effect that indirectly affects the increase in the price of other nearby farmland transactions. The study also found that various location attributes and socioeconomic attributes have a significant impact on farmland transaction prices. The spatio-temporal autoregressive model of farmland prices constructed in this study can be used to improve the prediction accuracy of farmland prices in the farmland transaction market in the future, and it is expected to be useful in drawing policy implications for stabilizing farmland prices

Prediction of Coagulation/Flocculation Treatment Efficiency of Dissolved Organic Matter (DOM) Using Multiple DOM Characteristics (다중 유기물 특성 지표를 활용한 용존 유기물질 응집/침전 제거효율 예측)

  • Bo Young Kim;Ka-Young Jung;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.465-474
    • /
    • 2023
  • The chemical composition and molecular weight characteristics of dissolved organic matter (DOM) exert a profound influence on the efficiency of organic matter removal in water treatment systems, acting as efficiency predictive indicators. This research evaluated the primary chemical and molecular weight properties of DOM derived from diverse sources, including rivers, lakes, and biomasses, and assessed their relationship with the efficiency of coagulation/flocculation treatments. Dissolved organic carbon (DOC) removal efficiency through coagulation/flocculation exhibited significant correlations with DOM's hydrophobic distribution, the ratio of humic-like to protein-like fluorescence, and the molecular weight associated with humic substances (HS). These findings suggest that the DOC removal rate in coagulation/flocculation processes is enhanced by a higher presence of HS in DOM, an increased influence of externally sourced DOM, and more presence of high molecular weight compounds. The results of this study further posit that the efficacy of water treatment processes can be more accurately predicted when considering multiple DOM characteristics rather than relying on a singular trait. Based on major results from this study, a predictive model for DOC removal efficiency by coagulation/flocculation was formulated as: 24.3 - 7.83 × (fluorescence index) + 0.089 × (hydrophilic distribution) + 0.102 × (HS molecular weight). This proposed model, coupled with supplementary monitoring of influent organic matter, has the potential to enhance the design and predictive accuracy for coagulation/flocculation treatments targeting DOC removal in future applications.

Dose Assessment for Workers in Accidents (사고 대응 작업자 피폭선량 평가)

  • Jun Hyeok Kim;Sun Hong Yoon;Gil Yong Cha;Jin Hyoung Bai
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.265-273
    • /
    • 2023
  • To effectively and safely manage the radiation exposure to nuclear power plant (NPP) workers in accidents, major overseas NPP operators such as the United States, Germany, and France have developed and applied realistic 3D model radiation dose assessment software for workers. Continuous research and development have recently been conducted, such as performing NPP accident management using 3D-VR based on As Low As Reasonably Achievable (ALARA) planning tool. In line with this global trend, it is also required to secure technology to manage radiation exposure of workers in Korea efficiently. Therefore, in this paper, it is described the application method and assessment results of radiation exposure scenarios for workers in response to accidents assessment technology, which is one of the fundamental technologies for constructing a realistic platform to be utilized for radiation exposure prediction, diagnosis, management, and training simulations following accidents. First, the post-accident sampling after the Loss of Coolant Accident(LOCA) was selected as the accident and response scenario, and the assessment area related to this work was established. Subsequently, the structures within the assessment area were modeled using MCNP, and the radiation source of the equipment was inputted. Based on this, the radiation dose distribution in the assessment area was assessed. Afterward, considering the three principles of external radiation protection (time, distance, and shielding) detailed work scenarios were developed by varying the number of workers, the presence or absence of a shield, and the location of the shield. The radiation exposure doses received by workers were compared and analyzed for each scenario, and based on the results, the optimal accident response scenario was derived. The results of this study plan to be utilized as a fundamental technology to ensure the safety of workers through simulations targeting various reactor types and accident response scenarios in the future. Furthermore, it is expected to secure the possibility of developing a data-based ALARA decision support system for predicting radiation exposure dose at NPP sites.

Corpus of Eye Movements in L3 Spanish Reading: A Prediction Model

  • Hui-Chuan Lu;Li-Chi Kao;Zong-Han Li;Wen-Hsiang Lu;An-Chung Cheng
    • Asia Pacific Journal of Corpus Research
    • /
    • v.5 no.1
    • /
    • pp.23-36
    • /
    • 2024
  • This research centers on the Taiwan Eye-Movement Corpus of Spanish (TECS), a specially created corpus comprising eye-tracking data from Chinese-speaking learners of Spanish as a third language in Taiwan. Its primary purpose is to explore the broad utility of TECS in understanding language learning processes, particularly the initial stages of language learning. Constructing this corpus involves gathering data on eye-tracking, reading comprehension, and language proficiency to develop a machine-learning model that predicts learner behaviors, and subsequently undergoes a predictability test for validation. The focus is on examining attention in input processing and their relationship to language learning outcomes. The TECS eye-tracking data consists of indicators derived from eye movement recordings while reading Spanish sentences with temporal references. These indicators are obtained from eye movement experiments focusing on tense verbal inflections and temporal adverbs. Chinese expresses tense using aspect markers, lexical references, and contextual cues, differing significantly from inflectional languages like Spanish. Chinese-speaking learners of Spanish face particular challenges in learning verbal morphology and tenses. The data from eye movement experiments were structured into feature vectors, with learner behaviors serving as class labels. After categorizing the collected data, we used two types of machine learning methods for classification and regression: Random Forests and the k-nearest neighbors algorithm (KNN). By leveraging these algorithms, we predicted learner behaviors and conducted performance evaluations to enhance our understanding of the nexus between learner behaviors and language learning process. Future research may further enrich TECS by gathering data from subsequent eye-movement experiments, specifically targeting various Spanish tenses and temporal lexical references during text reading. These endeavors promise to broaden and refine the corpus, advancing our understanding of language processing.

International Research Trend on Mountainous Sediment-related Disasters Induced by Earthquakes (지진 유발 산지토사재해 관련 국외 연구동향 분석)

  • Lee, Sang-In;Seo, Jung-Il;Kim, Jin-Hak;Ryu, Dong-Seop;Seo, Jun-Pyo;Kim, Dong-Yeob;Lee, Chang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.431-440
    • /
    • 2017
  • The 2016 Gyeongju Earthquake ($M_L$ 5.8) (occurred on September 12, 2016) and the 2017 Pohang Earthquake ($M_L$ 5.4) (occurred on November 15, 2017) caused unprecedented damages in South Korea. It is necessary to establish basic data related to earthquake-induced mountainous sediment-related disasters over worldwide. In this study, we analyzed previous international studies on the earthquake-induced mountainous sediment-related disasters, then classified research areas according to research themes using text-mining and co-word analysis in VOSviewer program, and finally examined spatio-temporal research trends by research area. The result showed that the related-researches have been rapidly increased since 2005, which seems to be affected by recent large-scale earthquakes occurred in China, Taiwan and Japan. In addition, the research area related to mountainous sediment-related disasters induced by earthquakes was classified into four subjects: (i) mechanisms of disaster occurrence; (ii) rainfall parameters controlling disaster occurrence; (iii) prediction of potential disaster area using aerial and satellite photographs; and (iv) disaster risk mapping through the modeling of disaster occurrence. These research areas are considered to have a strong correlation with each other. On the threshold year (i.e., 2012-2013), when cumulative number of research papers was reached 50% of total research papers published since 1987, proportions per unit year of all research areas should increase. Especially, the proportion of the research areas related to prediction of potential disaster area using aerial and satellite photographs is highly increased compared to other three research areas. These trends are responsible for the rapidly increasing research papers with study sites in China, and the research papers examined in Taiwan, Japan, and the United States have also contributed to increases in all research areas. The results are could be used as basic data to present future research direction related to mountainous sediment-related disasters induced by earthquakes in South Korea.

A PLS Path Modeling Approach on the Cause-and-Effect Relationships among BSC Critical Success Factors for IT Organizations (PLS 경로모형을 이용한 IT 조직의 BSC 성공요인간의 인과관계 분석)

  • Lee, Jung-Hoon;Shin, Taek-Soo;Lim, Jong-Ho
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.207-228
    • /
    • 2007
  • Measuring Information Technology(IT) organizations' activities have been limited to mainly measure financial indicators for a long time. However, according to the multifarious functions of Information System, a number of researches have been done for the new trends on measurement methodologies that come with financial measurement as well as new measurement methods. Especially, the researches on IT Balanced Scorecard(BSC), concept from BSC measuring IT activities have been done as well in recent years. BSC provides more advantages than only integration of non-financial measures in a performance measurement system. The core of BSC rests on the cause-and-effect relationships between measures to allow prediction of value chain performance measures to allow prediction of value chain performance measures, communication, and realization of the corporate strategy and incentive controlled actions. More recently, BSC proponents have focused on the need to tie measures together into a causal chain of performance, and to test the validity of these hypothesized effects to guide the development of strategy. Kaplan and Norton[2001] argue that one of the primary benefits of the balanced scorecard is its use in gauging the success of strategy. Norreklit[2000] insist that the cause-and-effect chain is central to the balanced scorecard. The cause-and-effect chain is also central to the IT BSC. However, prior researches on relationship between information system and enterprise strategies as well as connection between various IT performance measurement indicators are not so much studied. Ittner et al.[2003] report that 77% of all surveyed companies with an implemented BSC place no or only little interest on soundly modeled cause-and-effect relationships despite of the importance of cause-and-effect chains as an integral part of BSC. This shortcoming can be explained with one theoretical and one practical reason[Blumenberg and Hinz, 2006]. From a theoretical point of view, causalities within the BSC method and their application are only vaguely described by Kaplan and Norton. From a practical consideration, modeling corporate causalities is a complex task due to tedious data acquisition and following reliability maintenance. However, cause-and effect relationships are an essential part of BSCs because they differentiate performance measurement systems like BSCs from simple key performance indicator(KPI) lists. KPI lists present an ad-hoc collection of measures to managers but do not allow for a comprehensive view on corporate performance. Instead, performance measurement system like BSCs tries to model the relationships of the underlying value chain in cause-and-effect relationships. Therefore, to overcome the deficiencies of causal modeling in IT BSC, sound and robust causal modeling approaches are required in theory as well as in practice for offering a solution. The propose of this study is to suggest critical success factors(CSFs) and KPIs for measuring performance for IT organizations and empirically validate the casual relationships between those CSFs. For this purpose, we define four perspectives of BSC for IT organizations according to Van Grembergen's study[2000] as follows. The Future Orientation perspective represents the human and technology resources needed by IT to deliver its services. The Operational Excellence perspective represents the IT processes employed to develop and deliver the applications. The User Orientation perspective represents the user evaluation of IT. The Business Contribution perspective captures the business value of the IT investments. Each of these perspectives has to be translated into corresponding metrics and measures that assess the current situations. This study suggests 12 CSFs for IT BSC based on the previous IT BSC's studies and COBIT 4.1. These CSFs consist of 51 KPIs. We defines the cause-and-effect relationships among BSC CSFs for IT Organizations as follows. The Future Orientation perspective will have positive effects on the Operational Excellence perspective. Then the Operational Excellence perspective will have positive effects on the User Orientation perspective. Finally, the User Orientation perspective will have positive effects on the Business Contribution perspective. This research tests the validity of these hypothesized casual effects and the sub-hypothesized causal relationships. For the purpose, we used the Partial Least Squares approach to Structural Equation Modeling(or PLS Path Modeling) for analyzing multiple IT BSC CSFs. The PLS path modeling has special abilities that make it more appropriate than other techniques, such as multiple regression and LISREL, when analyzing small sample sizes. Recently the use of PLS path modeling has been gaining interests and use among IS researchers in recent years because of its ability to model latent constructs under conditions of nonormality and with small to medium sample sizes(Chin et al., 2003). The empirical results of our study using PLS path modeling show that the casual effects in IT BSC significantly exist partially in our hypotheses.

Prediction Model of Pine Forests' Distribution Change according to Climate Change (기후변화에 따른 소나무림 분포변화 예측모델)

  • Kim, Tae-Geun;Cho, Youngho;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.229-237
    • /
    • 2015
  • This study aims to offer basic data to effectively preserve and manage pine forests using more precise pine forests' distribution status. In this regard, this study predicts the geographical distribution change of pine forests growing in South Korea, due to climate change, and evaluates the spatial distribution characteristics of pine forests by age. To this end, this study predicts the potential distribution change of pine forests by applying the MaxEnt model useful for species distribution change to the present and future climate change scenarios, and analyzes the effects of bioclimatic variables on the distribution area and change by age. Concerning the potential distribution regions of pine forests, the pine forests, aged 10 to 30 years in South Korea, relatively decreased more. As the area of the region suitable for pine forest by age was bigger, the decreased regions tend to become bigger, and the expanded regions tend to become smaller. Such phenomena is conjectured to be derived from changing of the interaction of pine forests by age from mutual promotional relations to competitive relations in the similar climate environment, while the regions suitable for pine forests' growth are mostly overlap regions. This study has found that precipitation affects more on the distribution of pine forests, compared to temperature change, and that pine trees' geographical distribution change is more affected by climate's extremities including precipitation of driest season and temperature of the coldest season than average climate characteristics. Especially, the effects of precipitation during the driest season on the distribution change of pine forests are irrelevant of pine forest's age class. Such results are expected to result in a reduction of the pine forest as the regions with the increase of moisture deficiency, where climate environment influencing growth and physiological responses related with drought is shaped, gradually increase according to future temperature rise. The findings in this study can be applied as a useful method for the prediction of geographical change according to climate change by using various biological resources information already accumulated. In addition, those findings are expected to be utilized as basic data for the establishment of climate change adaptation policies related to forest vegetation preservation in the natural ecosystem field.

Predicting the Potential Habitat and Future Distribution of Brachydiplax chalybea flavovittata Ris, 1911 (Odonata: Libellulidae) (기후변화에 따른 남색이마잠자리 잠재적 서식지 및 미래 분포예측)

  • Soon Jik Kwon;Yung Chul Jun;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.335-344
    • /
    • 2023
  • Brachydiplax chalybea flavovittata, a climate-sensitive biological indicator species, was first observed and recorded at Jeju Island in Korea in 2010. Overwintering was recently confirmed in the Yeongsan River area. This study was aimed to predict the potential distribution patterns for the larvae of B. chalybea flavovittata and to understand its ecological characteristics as well as changes of population under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from May 2019 to May 2023. We used for the distribution model among downloaded 19 variables from the WorldClim database. MaxEnt model was adopted for the prediction of potential and future distribution for B. chalybea flavovittata. Larval distribution ranged within a region delimited by northern latitude from Jeju-si, Jeju Special Self-Governing Province (33.318096°) to Yeoju-si, Gyeonggi-do (37.366734°) and eastern longitude from Jindo-gun, Jeollanam-do (126.054925°) to Yangsan-si, Gyeongsangnam-do (129.016472°). M type (permanent rivers, streams and creeks) wetlands were the most common habitat based on the Ramsar's wetland classification system, followed by Tp type (permanent freshwater marshes and pools) (45.8%) and F type (estuarine waters) (4.2%). MaxEnt model presented that potential distribution with high inhabiting probability included Ulsan and Daegu Metropolitan City in addition to the currently discovered habitats. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), it was predicted that the possible distribution area would expand in the 2050s and 2090s, covering the southern and western coastal regions, the southern Daegu metropolitan area and the eastern coastal regions in the near future. This study suggests that B. chalybea flavovittata can be used as an effective indicator species for climate changes with a monitoring of their distribution ranges. Our findings will also help to provide basic information on the conservation and management of co-existing native species.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

Prediction of Changes in Habitat Distribution of the Alfalfa Weevil (Hypera postica) Using RCP Climate Change Scenarios (RCP 기후변화 시나리오 따른 알팔파바구미(Hypera postica)의 서식지 분포 변화 예측)

  • Kim, Mi-Jeong;Lee, Heejo;Ban, Yeong-Gyu;Lee, Soo-Dong;Kim, Dong Eon
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.127-135
    • /
    • 2018
  • Climate change can affect variables related to the life cycle of insects, including growth, development, survival, reproduction and distribution. As it encourages alien insects to rapidly spread and settle, climate change is regarded as one of the direct causes of decreased biodiversity because it disturbed ecosystems and reduces the population of native species. Hypera postica caused a great deal of damage in the southern provinces of Korea after it was first identified on Jeju lsland in the 1990s. In recent years, the number of individuals moving to estivation sites has concerned scientists due to the crop damage and national proliferation. In this study, we examine how climate change could affect inhabitation of H. postica. The MaxEnt model was applied to estimate potential distributions of H. postica using future climate change scenarios, namely, representative concentration pathway (RCP) 4.5 and RCP 8.5. As variables of the model, this study used six bio-climates (bio3, bio6, bio10, bio12, bio14, and bio16) in consideration of the ecological characteristics of 66 areas where inhabitation of H. postica was confirmed from 2015 to 2017, and in consideration of the interrelation between prediction variables. The fitness of the model was measured at a considered potentially useful level of 0.765 on average, and the warmest quarter has a high contribution rate of 60-70%. Prediction models (RCP 4.5 and RCP 8.5) results for the year 2050 and 2070 indicated that H. postica habitats are projected to expand across the Korean peninsula due to increasing temperatures.