• Title/Summary/Keyword: Fusion temperature

Search Result 654, Processing Time 0.024 seconds

Three-Dimensional Particle-in-cell Simulation of Electron Cyclotron Resonance Plasma with Belt-type Magnet Assembly

  • Lee, Hui Jea;Kim, Seong Bong;Yoo, Suk Jae;Cho, Moohyun;Namkung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.242.1-242.1
    • /
    • 2014
  • The electron cyclotron resonance plasma source with a belt-type magnet assembly (BMA) is designed for effective plasma confinements. For characterizing the plasma source, the plasma parameters are measured by Langmuir probe. However, the plasma parameters and the motion of charged particles near the ECR zone are not easy to diagnostics, because of the high plasma density and temperature. Thus, as an alternative method, the electromagnetic simulation of the plasma source has been performed by using three-dimensional particle-in-cell and Monte Carlo collisional (PIC-MCC) simulation codes. For considering the limitation of simulation resources and time, the periodic boundary condition is applied and the coulomb collision is neglected. In this paper, we present the results of 3D PIC simulations of ECR plasmas with BMA and we compare them with the experimental results.

  • PDF

A Study on the Styrofoaming Method by UHF Heating (초고주파 가열을 이용한 스티로폼 제조기술 연구)

  • Han Doo Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.94-103
    • /
    • 2005
  • The low foamed high strengthen styrofoam samples made by dielectric heating are discussed. We used the oscillator which have the frequency of 13.6 MHz and the power of 7 kW. 3 times expanded beads by steaming method were used in our foam-molding test. Internal fusion properties and density of internal structure were improved by dielectric foaming process. At the temperature of $105-110^{\circ}C$, the internal fusion property was maximally improved.

  • PDF

Cryogenic Fracture Toughness Evaluation for Austenitic Stainless Steels by Means of Unloading Compliance Method

  • Yu, Hyo-Sun;Kwon, Il-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.26-34
    • /
    • 2001
  • Most research to date concerning the cryogenic toughness of austenitic stainless steels has concentrated on the base metal and weld metal in weldments. The most severe problem faced on the conventional austenitic stainless steel is the thermal aging degradation such as sensitization and carbide induced embrittlement. In this paper, we investigate the cryogenic toughness degradation which can be occurred for austenitic stainless in welding. The test materials are austenitic stainless JN1, JJ1 and JK2 steels, which are materials recently developed for use in nuclear fusion apparatus at cryogenic temperature. The small punch(SP) test was conducted to detect similar isothermally aging condition with material degradation occurred in service welding. The single-specimen unloading compliance method was used to determine toughness degradation caused by thermal aging for austenitic stainless steels. In addition, we have investigated size effect on fracture toughness by using 20% side-grooved 0.5TCT specimens.

  • PDF

A Study on Creep Crack Growth Behavior of Weld Interface Crack (용접 계면균열의 크리프 균열성장 거동에 관한 연구)

  • 윤기봉;김광웅;정용근
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.83-91
    • /
    • 1998
  • Cracking problems which high temperature plant components suffer during long-term service, occur very often at welded locations. The crack occurs due to accumulated creep damage near fusion line or at heat affected zone (HAZ). However, most of the studies on creep crack growth behavior have been performed with matrix metal not wit welded metal due to the difficulty of interpreting the test results. In this study, creep crack growth rates were measured with C(T) specimens whose cracks were formed along the fusion line or HAZ. The measured crack growth rates were characterized by {TEX}$C_{t}${/TEX}-parameter derived for elastic-primary-secondary creeping material. Since contribution of primary creep was significant for the tested 1Cr-0.5Mo steel, its effect was carefully studied. Effects of crack tip plasticity and material aging were also discussed.

  • PDF

The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property

  • Kim, Tae Hyung;Song, Yoseb;Lee, Chan-Gi;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.351-356
    • /
    • 2017
  • Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of $H_2S$ gas.

Quasi-Continuous Operation of 1.55- μm Vertical-Cavity Surface-Emitting Lasers by Wafer Fusion

  • Song, Dae-Sung;Song, Hyun-Woo;Kim, Chang-Kyu;Lee, Young-Hee;Kim, Jung-Su
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.83-89
    • /
    • 2001
  • Room temperature quasi-continuous operation is achieved near 1556 nm with threshold current as low as 2.2 mA from a 5.6-${\mu}{\textrm}{m}$ oxide-aperture vertical-cavity surface-emitting laser. Wafer fusion techniques are employed to combine the GaAs/AlGaAs mirror and the InP-based InGaAs/InGaAsP active layer. In this structure, an $Al_x/O_y$/GaAs distributed bragg reflector and intra-cavity contacts are used to reduce free carrier absorption.

A Study of Weld Fusion Zone Phenomena in Austenitic Stainless Steels(2) - Effects of Nitrogen on Microstructural Evolution and Hot Cracking Susceptibility GTA Welds in STS 304 - (오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(2) - STS 304 용접부 조직특성 및 고온균열 감수성에 미치는 질소의 영향 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • The purpose of the present study was to investigate weld metallurgical phenomena such as primary solidification mode, microstructural evolution and hot cracking susceptibility in nitrogen-bearing austenitic stainless steel GTA welds. Eight experimental heats varying nitrogen content from 0.007 to 0.23 wt.% were used in this study. Autogenous GTA welding was performed on weld coupons and the primary solidification mode and their microstructural characteristics were investigated from the fusion welds. Varestraint test was employed to evaluate the solidification cracking susceptibility of the heats and TCL(Total Crack Length) was used as cracking susceptibility index. The solidification mode shifted from primary ferrite to primary austenite with an increase in nitrogen content. Retained delta ferrite exhibited a variety of morphology as nitrogen content varied. The weld fusion zone exhibited duplex structure(austenite+ferrite) at nitrogen contents less than 0.10 wt.% but fully austenitic structure at nitrogen contents more than 0.20 wt.%. The weld fusion zone in alloys with about 0.15 wt.% nitrogen experienced primary austenite + primary ferrite solidification (mode AF) and contained delta ferrite less than 1% at room temperature. Regarding to solidification cracking susceptibility, the welds with fully austenitic structure exhibited high cracking susceptibility while those with duplex structure low susceptibility. The cracking susceptibility increased slowly with an increase in nitrogen content up to 0.20 wt.% but sharply as nitrogen content exceeded 0.20 wt.%, which was attributed to solidification mode shift fro primary ferrite to primary austenite single phase solidification.

  • PDF

Factors Affecting Fusion Frequency of Pleurotus Protoplasts (느타리버섯속(屬)의 원형질체(原形質體) 융합률(融合率)에 영향(影響)을 미치는 요인(要因))

  • Yoo, Young-Bok;Kim, Yeong-Tae;Byun, Myung-Ok;You, Chang-Hyun;Cha, Dong-Yeul;Park, Yong-Hwan
    • The Korean Journal of Mycology
    • /
    • v.18 no.2
    • /
    • pp.77-83
    • /
    • 1990
  • Factors influencing the fusion frequency of protoplasts were investigated with auxotrophic mutants of Pleurotus florida and Pleurotus ostreatus. Immediately after the polyethylene glycol (PEG) solution was added, the protoplasts adhered firmly and shrank. During the subsequent dilution with 0.6 M sucrose, the protoplasts regained their normal size and larger bodies were observed. Interspecific heterokaryons were obtained by fusion of the nutritionally complementing protoplasts. Hyphae of the heterokaryotic fusants formed true clamp connections. The optimum conditions were a total of 1 to 15 million protoplasts per ml, 30% polyethylene glycol 8000 solution with adjustment to pH 8.0 and 0.6 M sucrose stabilized regeneration medium. Other parameters such as $CA^{++}$, glycine, exposure time and temperature influenced mainly the viability of the protoplasts.

  • PDF

Synthesis and Characterization of High Molecular Weight Biodegradable Polyoxalate (고분자량 생분해성 폴리옥살레이트의 합성과 특성분석)

  • Kim, Se-Ho;Yoo, Han-Na;Khang, Gil-Son;Lee, Dong-Won
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.547-552
    • /
    • 2010
  • Biodegradable polymers have gained enormous attentions in the pharmaceutical and biomedical applications, especially in drug delivery. In this work, we report the synthesis and characteristics of high molecular weight polyoxalate with ~75000 Da. Hydrolytic degradation kinetics and degradation products were characterized by nuclear magnetic resonance and gel permeation chromatography. Polyoxalate is a semicrystalline and thermally stable polymer with a glass transition temperature of ${\sim}35^{\circ}C$, which is suitable for drug delivery applications. The hydrophobic nature of polyoxalate allows it to be formulated into nanoparticles and encapsulate drugs using a conventional oil-in-water emulsion/solvent displacement method. Polyoxalate nanoparticles also exhibited excellent cytotoxicity profiles. It can be suggested that polyoxalate has great potential for numerous biomedical and pharmaceutical applications.

Postoperative Non-Pathological Fever Following Posterior Cervical Fusion Surgery : Is Laminoplasty a Better Preventive Method than Laminectomy?

  • Lee, Subum;Jung, Sang Ku;Kim, Hong Bum;Roh, Sung Woo;Jeon, Sang Ryong;Park, Jin Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.4
    • /
    • pp.487-494
    • /
    • 2020
  • Objective : To analyze the incidence and characteristics of delayed postoperative fever in posterior cervical fusion using cervical pedicle screws (CPS). Methods : This study analyzed 119 patients who underwent posterior cervical fusion surgery using CPS. Delayed fever was defined as no fever for the first 3 postoperative days, followed by an ear temperature ≥38℃ on postoperative day 4 and subsequent days. Patient age, sex, diagnosis, laminectomy, surgical level, revision status, body mass index, underlying medical disease, surgical duration, and transfusion status were retrospectively reviewed. Results : Of 119 patients, seven were excluded due to surgical site infection, spondylitis, pneumonia, or surgical level that included the thoracic spine. Of the 112 included patients, 28 (25%) were febrile and 84 (75%) were afebrile. Multivariate logistic regression analysis showed that laminectomy was a statistically significant risk factor for postoperative non-pathological fever (odds ratio, 10.251; p=0.000). In contrast, trauma or tumor surgery and underlying medical disease were not significant risk factors for fever. Conclusion : Patients who develop delayed fever 4 days after posterior cervical fusion surgery using CPS are more likely to have non-pathologic fever than surgical site infection. Laminectomy is a significant risk factor for non-pathologic fever.