• Title/Summary/Keyword: Fusion application

Search Result 625, Processing Time 0.023 seconds

A Inclined Slot-excited Circular Plasma Source with a Cusp Magnetic Field

  • You, H.J.;Kim, D.W.;Koo, M.;Jang, S.W.;Jung, Y.H.;Lee, B.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.435-435
    • /
    • 2010
  • A inclined slot-excited plasma source is newly designed and constructed for higher flux HNB(Hyperthermal Neutral Beam) generation. The present source is different from the vertical SLAN(SLot ANtenna) sources [1] in two aspects. One is that the slots are inclined, and the other is that the magnetic field is configured to a cusp type. These modifications are intended to make the source plasma operated in sub-milli-torr pressure regime and as thin as possible, both of which is to get higher HNB flux by decreasing the re-ionization rate of the reflected atoms from the neutralizer [2]. The plasma is generated in a quartz tube of internal diameter 170 mm enclosed in a aluminum application chamber of larger diameter 250 mm. The microwave power is fed to the plasma chamber by 8 inclined slots cut into the application chamber wall. The slots are coupled the chamber to a WR280 waveguide wound around it to form a ring resonator. In order to make two slots $\lambda_g/2$ apart in phase, the adjacent slots are rotated in opposite directions. The rotation angle of the slots are set to $60^{\circ}$ from the chamber axis. Between the quartz chamber and the aluminum cylindrical chamber 8 NdFeB magnets are equally spaced and fixed to form the cusp magnetic field confinement and ECR (Electron Cyclotron Resonance) field. In this presentation, the magnetic and electromagnetic simulations, and the measured plasma parameters are given for both the inclined and the vertical slot-excited plasma sources. We also discuss how the sources can be tailored to suit better-performing HNB sources.

  • PDF

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

Study on the Development and Sintering Process Characteristics of Powder Bed Fusion System (Powder Bed Fusion 시스템의 개발 및 소결 공정 특성에 관한 연구)

  • An, Young Jin;Bae, Sungwoo;Kim, Dong Soo;Kim, Jae Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.773-779
    • /
    • 2015
  • The laser Powder Bed Fusion (PBF) system is currently recognized as a leading process. Due to the various materials employed such as thermoplastic, metal and ceramic composite powder, the application's use extends to machinery, automobiles, and medical devices. The PBF system's surface quality of prototypes and processing time are significantly affected by several parameters such as laser power, laser beam size, heat temperature and laminate thickness. In order to develop a more elaborate and rapid system, this study developed a new PBF system and sintering process. It contains a 3-axis dynamic focusing scanner system that maintains a uniform laser beam size throughout the system unlike the $f{\theta}$ lens. In this study, experiments were performed to evaluate the effects of various laser scanning parameters and fabricating parameters on the fusion process, in addition to fabricating various 3D objects using a PA-12 starting material.

Fabrication of Ceramic-based Passive Mixers for Microfluidic Application by Thick Film Lithography (후막리소그라피를 이용한 세라믹기반의 미세유체소자용 수동형 혼합기의 제조)

  • Choi, Jae-Kyung;Yoon, Young-Joon;Lim, Jong-Woo;Kim, Hyo-Tae;Koo, Eun-Hae;Choi, Youn-Suk;Lee, Jong-Heun;Kim, Jong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.739-743
    • /
    • 2008
  • Microfluidic device can be applied in a wide range of chemical and biological technology. In this paper, ceramic-based T-type passive mixers for microfluidic applications were fabricated by LTCC process combined with thick film photolithography. The base ceramic material in thick film was amorphous cordierite $((Mg,Ca)_2Al_4Si_5O_{18})$ and photoimageable polymers were added to give a photosensitivity. Two types of passive mixer, which showed the channel width of 1.0 mm and $200{\mu}m$, respectively, were designed considering mixing efficiency in the channel and their microfluidic properties were discussed in detail.

Speech emotion recognition based on genetic algorithm-decision tree fusion of deep and acoustic features

  • Sun, Linhui;Li, Qiu;Fu, Sheng;Li, Pingan
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.462-475
    • /
    • 2022
  • Although researchers have proposed numerous techniques for speech emotion recognition, its performance remains unsatisfactory in many application scenarios. In this study, we propose a speech emotion recognition model based on a genetic algorithm (GA)-decision tree (DT) fusion of deep and acoustic features. To more comprehensively express speech emotional information, first, frame-level deep and acoustic features are extracted from a speech signal. Next, five kinds of statistic variables of these features are calculated to obtain utterance-level features. The Fisher feature selection criterion is employed to select high-performance features, removing redundant information. In the feature fusion stage, the GA is is used to adaptively search for the best feature fusion weight. Finally, using the fused feature, the proposed speech emotion recognition model based on a DT support vector machine model is realized. Experimental results on the Berlin speech emotion database and the Chinese emotion speech database indicate that the proposed model outperforms an average weight fusion method.

TEXTURE ANALYSIS, IMAGE FUSION AND KOMPSAT-1

  • Kressler, F.P.;Kim, Y.S.;Steinnocher, K.T.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.792-797
    • /
    • 2002
  • In the following paper two algorithms, suitable for the analysis of panchromatic data as provided by KOMPSAT-1 will be presented. One is a texture analysis which will be used to create a settlement mask based on the variations of gray values. The other is a fusion algorithm which allows the combination of high resolution panchromatic data with medium resolution multispectral data. The procedure developed for this purpose uses the spatial information present in the high resolution image to spatially enhance the low resolution image, while keeping the distortion of the multispectral information to a minimum. This makes it possible to use the fusion results for standard multispecatral classification routines. The procedures presented here can be automated to large extent, making them suitable for a standard processing routine of satellite data.

  • PDF

Fault Diagnosis of Induction Motors Using Data Fusion of Vibration and Current Signals (진동 및 전류신호의 데이터융합을 이용한 유도전동기의 결함진단)

  • 김광진;한천
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1091-1100
    • /
    • 2004
  • This paper presents an approach for the monitoring and detection of faults in induction machine by using data fusion technique and Dempster-Shafer theory Features are extracted from motor stator current and vibration signals. Neural network is trained and Hosted by the selected features of the measured data. The fusion of classification results from vibration and current classifiers increases the diagnostic accuracy. The efficiency of the proposed system is demonstrated by detecting motor electric and mechanical faults originated from the induction motors. The results of the test confirm that the proposed system has potential for real time application.

A Study on Discharge Phenomenon of Spherically Convergent Beam Fusion Device for Neutron Generation (중성자 발생용 구형 집속빔 핵융합 장치의 방전현상 연구)

  • Park, Jeong-Ho;Ju, Heung-Jin;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.467-470
    • /
    • 2007
  • Application field of neutron beam is very broad including industry, medicine and science. But the research and development and use of neutron beam is restricted within in narrow limits in this country, because neutron beam facility is insufficient - a big research facility of nuclear reactor(HANARO) and some small industrial facilities which use radioisotope neutron source are available. This paper compare and investigate the results of experiment and numerical analysis of the discharge in the spherically convergent beam fusion device which were expected as a portable neutron source. The spherically convergent beam fusion device will offer stability in neutron production, possibility of movement for convenience, low construction cost and higher neutron flux than radioisotope neutron source. The star mode discharge which efficiently generate neutron, were observed at both results.

Application and Technology on Development of High Temperature Structure SiCf/SiC Composite Materials (고온용 SiCf/SiC 복합재료개발 기술과 활용방향)

  • Yoon, Han-Ki;Lee, Young-Ju;Park, Yi-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1016-1021
    • /
    • 2008
  • The development of the first wall whose major function is to withstand high neutron and heat fluxes is a critical path to fusion power. The materials database and the fabrication technology are being developed for design, construction and safety operation of the fusion reactor. The first wall was designed to consist of the plasma facing armor, the heat sink layer and the supporting plates. and Porous materials are of significant interest due to their wide applications in catalysis, separation, lightweight structural materials. In this study, the characteristics of the sintering process of SiC ceramic, $SiC_f$/SiC composite and porous $C_f$/SiC composite have been introduced order to study of the fusion blanket materials and heat-exchange pannel.

Decentralized Moving Average Filtering with Uncertainties

  • Song, Il Young
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.418-422
    • /
    • 2016
  • A filtering algorithm based on the decentralized moving average Kalman filter with uncertainties is proposed in this paper. The proposed filtering algorithm presented combines the Kalman filter with the moving average strategy. A decentralized fusion algorithm with the weighted sum structure is applied to the local moving average Kalman filters (LMAKFs) of different window lengths. The proposed algorithm has a parallel structure and allows parallel processing of observations. Hence, it is more reliable than the centralized algorithm when some sensors become faulty. Moreover, the choice of the moving average strategy makes the proposed algorithm robust against linear discrete-time dynamic model uncertainties. The derivation of the error cross-covariances between the LMAKFs is the key idea of studied. The application of the proposed decentralized fusion filter to dynamic systems within a multisensor environment demonstrates its high accuracy and computational efficiency.