• Title/Summary/Keyword: Fuse-links

Search Result 15, Processing Time 0.024 seconds

Design of a Logic eFuse OTP Memory IP (Logic eFuse OTP 메모리 IP 설계)

  • Ren, Yongxu;Ha, Pan-bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.317-326
    • /
    • 2016
  • In this paper, a logic eFuse (electrical Fuse) OTP (One-Time Programmable) memory IP (Intellectual Property) using only logic transistors to reduce the development cost and period of OTP memory IPs is designed. To secure the reliability of other IPs than the OTP memory IP, a higher voltage of 2,4V than VDD (=1.5V) is supplied to only eFuse links of eFuse OTP memory cells directly through an external pad FSOURCE coming from test equipment in testing wafers. Also, an eFuse OTP memory cell of which power is supplied through FSOURCE and hence the program power is increased in a two-dimensional memory array of 128 rows by 8 columns being also able to make the decoding logic implemented in small area. The layout size of the designed 1kb eFuse OTP memory IP with the Dongbu HiTek's 110nm CIS process is $295.595{\mu}m{\times}455.873{\mu}m$ ($=0.134mm^2$).

Design of Fuse-Link Structure & Fe-Ni Alloy Element's Shape to Increase an Interrupt Rating of a Semi-Enclosed Type Fuse (반밀폐형 퓨즈의 차단용량 상승을 위한 Fe-Ni 합금 가용체의 형상 및 퓨즈링크 구조 설계)

  • Kim, Seong-Ju;Kim, Doe-Hoon;Kang, Chang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.644-650
    • /
    • 2018
  • According to a miniaturization and integration of electric device, a little size of fuse satisfying the current carrying capacity as well as an explosive tolerance and current interrupt rating are required. Fe-Ni alloy is applied to decrease an oxidation of fuse elements. A resistance and T.C.R(temperature coefficient of resistance) of a fuse are analyzed by changing a content of Ni And full rated current I-T curve from 1A to 6.3A has been tested. In order to an explosive energy, a straight wire type is selected to reduce a fuse melting time. An interrupt rating test was conducted by changing a content of Ni and the optimal content of Ni is to be 40%.

Deign of Small-Area Differential Paired eFuse OTP Memory for Power ICs (Power IC용 저면적 Differential Paired eFuse OTP 메모리 설계)

  • Park, Heon;Lee, Seung-Hoon;Jin, Kyo-Hong;Ha, Pan-Bong;Kim, Young-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • In this paper, a small-area 32-bit differential paired eFuse OTP memory for power ICs is designed. In case of smaller number of rows than that of columns for the OTP memory cell array, a scheme for the cell array reducing the number of SL driver circuits requiring their larger layout areas by routing the SL (source line) lines supplying programming currents for eFuse links in the row direction instead of the column direction as well as a core circuit is proposed. In addition, to solve a failure of being blown for non-blown eFuse links by the electro-migration phenomenon, a regulated voltage of V2V ($=2V{\pm}0.2V$) is used to a RWL (read word line) driver circuit and a BL (bit line) pull-up driver circuit. The layout size of the designed 32-bit eFuse OTP memory is $228.525{\mu}m{\times}105.435{\mu}m$, which is confirmed to be 20.7% smaller than that of the counterpart using the conventional cell array routing, namely $197.485{\mu}m{\times}153.715{\mu}m$.

Design of an eFuse OTP Memory of 8 Bits for PMICs and its Measurement (PMIC용 8비트 eFuse OTP Memory 설계 및 측정)

  • Park, Young-Bae;Choi, In-Hwa;Lee, Dong-Hoon;Jin, Liyan;Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.722-725
    • /
    • 2012
  • In this paper, we design an 8-bit eSuse OTP (one-time programmable) memory based on a $0.35{\mu}m$ BCD process using differential paired eFuse cells which can sense BL data without a reference voltage and also have smaller sensing resistances of programmed eFuse links. The channel widths of a program transistor of the differential eFuse OTP cell are splitted into $45{\mu}m$ and $120{\mu}m$. Also, we implement a sensing margin test circuit with variable pull-up loads in consideration of variations of the programmed eFuse resistances. It is confirmed by measurement results that the designed 8-bit eFuse OTP memory IP gives a better yield when the channel width is $120{\mu}m$.

  • PDF

Design for a Fuse Element of Sub-miniature Fuse with High Breaking Capacity Characteristics (높은 차단용량 특성을 갖는 초소형 미니어처 퓨즈의 가용체 설계)

  • Ahn, Chang Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.131-137
    • /
    • 2017
  • In order to safely protect high over current flowing into the main circuit at short-circuit without any explosion or fire, the enclosed cartridge fuse with a high interrupting capacity should be applied. But this fuse is impossible to be applied to an inner electronic circuit because of a limited space problem result from the miniaturization trend of products. Therefore, it is necessary to apply a sub-miniature fuse with a relatively small size. However the semi-enclosed fuse which is more free for an influx of air than the enclosed cartridge fuse and is possible to protect fuse elements with chemical and physical combination can be adoptable. But it has a limit of implementing the characteristic of a high breaking capacity. For these reasons, the Fe-42wt%Ni fuse elements alloy and fuse-link with less space were designed to increase a breaking capacity of sub-miniature fuse and its safety for fire and explosion was confirmed in this paper.

A Study on the fuse elements for the protection of a semiconductor using a ceramic substrate (세라믹 기판을 이용한 반도체 보호용 휴즈 엘리먼트에 관한 연구)

  • Lee, S.H.;Han, S.O.;Kim, J.S.;Lee, S.H.;Sung, K.S.;Kwon, Y.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.762-764
    • /
    • 1992
  • This Paper presents some experimental result of current limiting and short circuit interruption behavior of thin copper film, 12${\mu}m$, 25${\mu}m$, 40${\mu}m$, 50${\mu}m$ on alumina substrate. and a fuse-link having elements of copper film provided with high-precision small hols with electrolytical process. Construction, fabrication, as well as the test circuitry built especially for the develoment of this fuse-links are explained below.

  • PDF

Design of Low-Noise and High-Reliability Differential Paired eFuse OTP Memory (저잡음 · 고신뢰성 Differential Paired eFuse OTP 메모리 설계)

  • Kim, Min-Sung;Jin, Liyan;Hao, Wenchao;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2359-2368
    • /
    • 2013
  • In this paper, an IRD (internal read data) circuit preventing the reentry into the read mode while keeping the read-out DOUT datum at power-up even if noise such as glitches occurs at signal ports such as an input signal port RD (read) when a power IC is on, is proposed. Also, a pulsed WL (word line) driving method is used to prevent a DC current of several tens of micro amperes from flowing into the read transistor of a differential paired eFuse OTP cell. Thus, reliability is secured by preventing non-blown eFuse links from being blown by the EM (electro-migration). Furthermore, a compared output between a programmed datum and a read-out datum is outputted to the PFb (pass fail bar) pin while performing a sensing margin test with a variable pull-up load in consideration of resistance variation of a programmed eFuse in the program-verify-read mode. The layout size of the 8-bit eFuse OTP IP with a $0.18{\mu}m$ process is $189.625{\mu}m{\times}138.850{\mu}m(=0.0263mm^2)$.

Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel

  • Guo, Yan;Lian, Ming;Zhang, Hao;Cheng, Qianqian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.827-841
    • /
    • 2022
  • The rotation capacities of the plastic hinges located at beam-ends are significantly reduced in traditional steel framed-tube structures (SFTSs) because of the small span-to-depth ratios of the deep beams, leading to the low ductility and energy dissipation capacities of the SFTSs. High-strength steel framed-tube structures with replaceable shear links (HSSFTS-RSLs) are proposed to address this issue. A replaceable shear link is located at the mid-span of a deep spandrel beam to act as a ductile fuse to dissipate the seismic energy in HSSFTS-RSLs. A 2/3-scaled HSSFTS-RSL specimen with a shear link fabricated of high-strength low-alloy Q355 structural steel was created, and a cyclic loading test was performed to study the hysteresis behaviors of this specimen. The test results were compared to the specimens with soft steel shear links in previous studies to investigate the feasibility of using high-strength low-alloy steel for shear links in HSSFTS-RSLs. The effects of link web stiffener spaces on the cyclic performance of the HSSFTS-RSLs with Q355 steel shear links were investigated based on the nonlinear numerical analysis. The test results indicate that the specimen with a Q355 steel shear link exhibited a reliable and stable seismic performance. If the maximum interstory drift of HSSFTS-RSL is designed lower than 2% under earthquakes, the HSSFTS-RSLs with Q355 steel shear links can have similar seismic performance to the structures with soft steel shear links, even though these shear links have similar shear and flexural strength. For the Q355 steel shear links with web height-to-thickness ratios higher than 30.7 in HSSFTS-RSLs, it is suggested that the maximum intermediate web stiffener space is decreased by 15% from the allowable space for the shear link in AISC341-16 due to the analytical results.

Numerical study of the seismic behavior of steel frame-tube structures with bolted web-connected replaceable shear links

  • Lian, Ming;Cheng, Qianqian;Zhang, Hao;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.305-325
    • /
    • 2020
  • Beams of steel frame-tube structures (SFTSs) typically have span-to-depth ratios of less than five. This makes a flexural beam unsuitable for such an application because the plastic hinges at the beam-ends cannot be adequately developed. This leads to lower ductility and energy dissipation capacities of SFTSs. To address this, SFTSs with bolted web-connected replaceable shear links (SFTS-BWSLs) are proposed. In this structural system, a web-connected replaceable shear link with a back-to-back double channel section is placed at the mid-length of the deep beam to act as a ductile fuse. This allows energy from earthquakes to be dissipated through link shear deformation. SFTS and SFTS-BWSL buildings were examined in this study. Several sub-structures were selected from each designed building and finite element models were established to study their respective hysteretic performance. The seismic behavior of each designed building was observed through static and dynamic analyses. The results indicate that the SFTS-BWSL and SFTS have similar initial lateral stiffness and shear leg properties. The SFTS-BWSL had lower strength, but higher ductility and energy dissipation capacities. Compared to the SFTS, the SFTS-BWSL had lower interstory drift, base shear force, and story shear force during earthquakes. This design approach could concentrate plasticity on the shear link while maintaining the residual interstory drift at less than 0.5%. The SFTS-BWSL is a reliable resistant system that can be repaired by replacing shear links damaged due to earthquakes.

Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links

  • Lian, Ming;Zhang, Hao;Cheng, Qianqian;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.365-382
    • /
    • 2019
  • In steel frame-tube structures (SFTSs) the application of flexural beam is not suitable for the beam with span-to-depth ratio lower than five because the plastic hinges at beam-ends can not be developed properly. This can lead to lower ductility and energy dissipation capacity of the SFTS. To address this problem, a replaceable shear link, acting as a ductile fuse at the mid length of deep beams, is proposed. SFTS with replaceable shear links (SFTS-RSLs) dissipate seismic energy through shear deformation of the link. In order to evaluate this proposal, buildings were designed to compare the seismic performance of SFTS-RSLs and SFTSs. Several sub-structures were selected from the design buildings and finite element models (FEMs) were established to study their hysteretic behavior. Static pushover and dynamic analyses were undertaken in comparing seismic performance of the FEMs for each building. The results indicated that the SFTS-RSL and SFTS had similar initial lateral stiffness. Compared with SFTS, SFTS-RSL had lower yield strength and maximum strength, but higher ductility and energy dissipation capacity. During earthquakes, SFTS-RSL had lower interstory drift, maximum base shear force and story shear force compared with the SFTS. Placing a shear link at the beam mid-span did not increase shear lag effects for the structure. The SFTS-RSL concentrates plasticity on the shear link. Other structural components remain elastic during seismic loading. It is expected that the SFTS-RSL will be a reliable dual resistant system. It offers the benefit of being able to repair the structure by replacing damaged shear links after earthquakes.