• Title/Summary/Keyword: Further compression

Search Result 361, Processing Time 0.025 seconds

Rate-dependent shearing response of Toyoura sand addressing influence of initial density and confinement: A visco-plastic constitutive approach

  • Mousumi Mukherjee;Siddharth Pathaka
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.197-208
    • /
    • 2023
  • Rate-dependent mechanical response of sand, subjected to loading of medium to high strain rate range, is of interest for several civilian and military applications. Such rate-dependent response can vary significantly based on the initial density state of the sand, applied confining pressure, considered strain rate range, drainage condition and sand morphology. A numerical study has been carried out employing a recently proposed visco-plastic constitutive model to explore the rate-dependent mechanical behaviour of Toyoura sand under drained triaxial loading condition. The model parameters have been calibrated using the experimental data on Toyoura sand available in published literature. Under strain rates higher than a reference strain rate, the simulation results are found to be in good agreement with the experimentally observed characteristic shearing behaviour of sand, which includes increased shear strength, pronounced post-peak softening and suppressed compression. The rate-dependent response, subjected to intermediate strain rate range, has further been assessed in terms of enhancement of peak shear strength and peak friction angle over varying initial density and confining pressure. The simulation results indicate that the rate-induced strength increase is highest for the dense state and such strength enhancements remain nearly independent of the applied confinement level.

Stochastic identification of masonry parameters in 2D finite elements continuum models

  • Giada Bartolini;Anna De Falco;Filippo Landi
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.429-444
    • /
    • 2023
  • The comprehension and structural modeling of masonry constructions is fundamental to safeguard the integrity of built cultural assets and intervene through adequate actions, especially in earthquake-prone regions. Despite the availability of several modeling strategies and modern computing power, modeling masonry remains a great challenge because of still demanding computational efforts, constraints in performing destructive or semi-destructive in-situ tests, and material uncertainties. This paper investigates the shear behavior of masonry walls by applying a plane-stress FE continuum model with the Modified Masonry-like Material (MMLM). Epistemic uncertainty affecting input parameters of the MMLM is considered in a probabilistic framework. After appointing a suitable probability density function to input quantities according to prior engineering knowledge, uncertainties are propagated to outputs relying on gPCE-based surrogate models to considerably speed up the forward problem-solving. The sensitivity of the response to input parameters is evaluated through the computation of Sobol' indices pointing out the parameters more worthy to be further investigated, when dealing with the seismic assessment of masonry buildings. Finally, masonry mechanical properties are calibrated in a probabilistic setting with the Bayesian approach to the inverse problem based on the available measurements obtained from the experimental load-displacement curves provided by shear compression in-situ tests.

"Cohesiveness of Hyaluronic Acid Fillers": Evaluation Using Multiple Cohesion Tests

  • Kyun Tae Kim;Won Lee;Eun-Jung Yang
    • Archives of Plastic Surgery
    • /
    • v.51 no.1
    • /
    • pp.14-19
    • /
    • 2024
  • Background Hyaluronic acid fillers can be manufactured using various processes. They have multiple properties, including their concentration, degree of modification, and rheological data. Cohesion is one such property to evaluate gel integrity; however, there is no standardized method for calculating this parameter. This study aimed to evaluate different tests for calculating hyaluronic acid cohesion and discuss the importance of hyaluronic acid cohesion as a consideration when selecting fillers. Methods The cohesion levels of five different hyaluronic acid fillers with different rheological properties were evaluated and compared using the drop weight, compression, tack, and dispersion time tests. Results The cohesion tests yielded different results in the samples. Samples 2 and 4 showed approximately two times the number of droplets when compared with Sample 5 in drop weight test. Samples 1, 2, 3, and 4 were superior to Sample 5 in tack test. Samples 1, 2, and 3 showed cohesive appearances at 95 seconds in most cases in dispersion test. Rheological test results did not reflect the measures of cohesion. Conclusion Although there are no definite standardized tests to evaluate the cohesion of hyaluronic acid fillers, our proposed tests showed similar results for different hyaluronic acid filler products. Further studies are needed to evaluate the cohesion of hyaluronic acid fillers and determine the clinical use of this distinguishing characteristic for clinicians selecting the product of choice. Level of evidence statement: These data are Level IV evidence.

Low Temperature Interface Modification: Electrochemical Dissolution Mechanism of Typical Iron and Nickel Base Alloys

  • Jiangwei Lu;Zhengyang Xu;Tianyu Geng
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.220-241
    • /
    • 2024
  • Due to its unique advantages, electrochemical machining (ECM) is playing an increasingly significant role in the manufacture of difficult-to-machine materials. Most of the current ECM research is conducted at room temperature, with studies on ECM in a cryogenic environment not having been reported to date. This study is focused on the electrochemical dissolution characteristics of typical iron and nickel base alloys in NaNO3 solution at low temperature (-10℃). The polarization behaviors and passive film properties were studied by various electrochemical test methods. The results indicated that a higher voltage is required for decomposition and more pronounced pitting of their structures occurs in the passive zone in a cryogenic environment. A more in-depth study of the composition and structure of the passive films by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy showed that the passive films of the alloys are modified at low temperature, and their capacitance characteristics are more prominent, which makes corrosion of the alloys more likely to occur uniformly. These modified passive films have a huge impact on the surface morphologies of the alloys, with non-uniform corrosion suppressed and an improvement in their surface finish, indicating that lowering the temperature improves the localization of ECM. Together with the cryogenic impact of electron energy state compression, the accuracy of ECM can be further improved.

An Exploratory Study on the Applicability of Tactics in Team Performance Evaluation

  • Jungsu MOON;Ilhyeok PARK;Nam-Su KIM
    • Journal of Sport and Applied Science
    • /
    • v.8 no.3
    • /
    • pp.21-33
    • /
    • 2024
  • Purpose: The purpose of this study is to explore, extract and categorize the team's tactical factors in soccer matches. Tactical factors are extracted on the basis of the phases consisting a football match (attack, defense, attacking transition, and defensive transition). Research design, data, and methodology: A semi-structural interviews were conducted with a group of experts of five football managers and coaches to explore tactical factors. Analysis of the content was done using a categorical aggregation or direct interpretation, and then was conducted factorial extraction and categorization. Results: In the attack phase, a direct attack and a step-by-step (occupation) attack form the type of attack, and in the attack transition phase, a long counter attack and a short counter attack form the type of attack. The type of defense in the defense phase was divided into regional defense and compression defense, and the type of defense in the defense transition phase was divided into defense for delaying counterattacks and defense for immediate pressure. Each tactics appeared differently depending on the situation of the game and the play of style. Conclusions: It may indicate the team's performance and has the potential for being used as a team performance factor. Further implications were discussed.

Dynamic Material Testing of Aged Concrete Cores From the Outer Wall of the High-Flux Advanced Neutron Application Reactor

  • JaeHoon Lim;Byoungsun Park;Jongmin Lim;Yun-Young Yang;Sung-Hyo Lee;Sang Soon Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.139-144
    • /
    • 2024
  • Concrete structures must maintain their shielding abilities and structural integrity over extended operational periods. Despite the widespread use of dry storage systems for spent nuclear fuel, research on the properties of deteriorated concrete and their impact on structural performance remains limited. To address this significant research gap, static and dynamic material testing was conducted on concrete specimens carefully extracted from the outer wall of the High-flux Advanced Neutron Application ReactOr (HANARO), constructed approximately 30 years ago. Despite its age, the results reveal that the concrete maintains its structural integrity impressively well, with static compression tests indicating an average compressive strength exceeding the original design standards. Further dynamic property testing using advanced high-speed material test equipment supported these findings, showing the consistency of dynamic increase factors with those reported in previous studies. These results highlight the importance of monitoring and assessing concrete structures in nuclear facilities for long-term safety and reliability.

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험)

  • Eom, Tae-Sung;Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.535-547
    • /
    • 2012
  • PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.

Geological structure of the Ogcheon belt in the Buunnyeong area, Mungyeong, Korea (문경 부운령지역에서 옥천대의 지질구조)

  • ;原郁夫;宮本隆實
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.82-94
    • /
    • 2001
  • The main geological structure of the Ogcheon belt in the Buunnyeong area, Mungyeong, which consists of three stratigraphic sequences, Joseon and Pyeongan Supergroups and Daedong Group, is characterized by the development of ESE-vergence structural unit (Dangok unit) and WNW-vergence structural units (Samsil and Bugongni units) onto an autochthonous unit (Buunnyeong unit). Three phases of deformation are recognized in this area. The lent phase of deformation coourred under the WNW-ESE compression, forming an upright-open fold (Buunnyeong-I fold) with NNE axial trend in the Buunnyeong unit. The second phase of deformation also under the WNW-ESE compression formed the Dangok, Samsil and Bugongni units, resulting in the further closing of the Buunnyeong-I open fold, the elongation of pebbles in the conglomerate rocks of a basal sequence of the Daedong Group, recumbent folds (Buunnyeong-II fold) and drag folds (Dangok fold) with NNE axial trend in the Buunnyeong and Dangok units, respectively. The third phase of deformation formed kink folds with its axis p1unging subvertically. The first and second phases of deformation took place before and after the deposition of the Daedong Group of the Upper Triassic -Lower Jurassic, respectively. These first two deformation events, which occurred under the same WNW-ESE compressional field, produced the regional NNE trend of geological structure in the Joseon and Pyeongan Supergroups of this area.

  • PDF

An Experimental Study on the Compressive Strength of Reinforcing Bars in Concrete Specimens and Compressive Strength Measurement Methods (콘크리트 압축강도 측정법과 공시체 내 철근이 압축강도 측정에 미치는 실험적 연구)

  • Lee, Won-Hong;Choi, Sang-Gi;Lee, Seuong-Yeol;Ahn, Jin-Hee;Kang, Beom-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.33-40
    • /
    • 2021
  • Measuring the compressive strength of concrete is a very important factor in the safety review of concrete structures. Concrete compressive strength measurement methods include destructive and non-destructive methods. The destructive method includes the uniaxial compression failure method, and the non-destructive method includes the rebound hardness method and the elastic wave measurement method. In this study, the type of measurement method and the effect of reinforcing bars inside the concrete were tested to examine the relationship between them. Regardless of the type of specimen, the average compressive strength by the elastic wave measurement method among the three experimental methods was greater than the average compressive strength by the other methods. When the specimen type is the same, the standard deviation of the measured values of the elastic wave measurement method is smaller than that of the other measurement methods, so it can be seen that the elastic wave measurement method does not show large variance in the measured values compared to the other two measurement methods. When the average compressive strength according to the test method for each specimen was compared with the average compressive strength of the compressive failure test method, the average compressive strength was measured to be high in the order of the elastic wave measurement method, the compression failure test, and the rebound hardness method. Since the measured values of the compressive strength of concrete are different depending on the method of measuring the compressive strength of concrete and the presence or absence of reinforcing bars inside the concrete, further research is required considering the effect of various concrete covers.

Development of Reinforcement Grout Materials Using Blast Furnace Slag Powder and Aramid Fiber (고로슬래그 미분말과 아라미드 섬유를 이용한 보강그라우트재 개발)

  • Seo, Hyeok;Park, Kyung-Ho;Kim, Chan-Jung;Kim, Ho-Chul;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.67-77
    • /
    • 2019
  • The grouting method is utilized to reinforce and waterproof poor grounds, enhance the bearing capacity of structures damaged resulting from settlement due to elevation and vibration or differential settlement, and for cutoff. The purpose of this research is to enhance the compressive strength of grout materials by using aramid fiber and develop a high-strength ground improvement method by using blast furnace slag powder. In this regard, this study has conducted a uniaxial compression test after checking the high charge (higher than 50%) of the ratio of blast furnace slag powder and cement at 100:0, 70:30 and 40:60%, adding the aramid mixture based on 0, 0.5 and 1.0% of the cement and furnace slag powder weight and creating sand gels based on surface oiling rate of 0.7 and 1.2%. For the environmental review evaluation, a heavy metal exudation test and a pH test measurement have been conducted. The experiment results showed that 1% increase of aramid fiber led to 1.3 times greater uniaxial compression intensity. As for the hexavalent chrome, a 30% increase in blast furnace slag powder led to approximately 50% decrease in heavy metal exudation. However, the pH test revealed that a 30% increase in blast furnace slag powder resulted in approximately 0.5 increase in pH. Further research on the pH part is needed in the future.