• Title/Summary/Keyword: Furnace Process Control

Search Result 111, Processing Time 0.03 seconds

Fabrication of TiAl Alloys by Mechanical Milling and Spark Plasma Sintering (기계적 분쇄화 및 스파크 플라즈마 소결에 의한 TiAl 합금의 제조)

  • Kim, M.S.;Kim, J.S.;Hwang, S.J.;Hong, Y.H.;Oh, M.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • In the present study, newly developed spark plasma sintering(SPS) technique was introduced to refine the grain size of ${\gamma}$-based TiAl intermetallic compounds. Ti-46Al-1.5Mo and Ti-46Al-1.5Mo-0.2C(at%) prealloyed powders were produced by mechanical milling(MM) in high-energy attritor. The mechanically milled powders were characterized by XRD and SEM for the microstructural evolution as a function of milling time. And then, the MMed powders were sintered by both spark plasma sintering and hot pressing in vacuum (HP). After the sintering process, MM-SPSed specimens were heat-treated in a vacuum furnace (SPS-VHT) and in the SPS equipment(MM-SPS) for microstructural control. It was found from microstrutural observation that the microstructure consisting of equiaxed ${\gamma}$-TiAl with a few hundred nanometer in average size and ${\alpha}_2-Ti_3Al$ particles were formed after both sintering processes. It was also revealed from hardness test and three-point bending test that the effect of grain refinement on the hardness and bending strength is much higher than that of carbon addition. The fully lamellar microstructures, which is less than $80{\mu}m$ in average grain size was obtained by SPS-VHT process, and the fully lamellar microstructure which is less than $100{\mu}m$ in average grain size was obtained by MM-SPS for a relatively shorter heat-treatment time.

Microstructure of Aluminum Can Body Alloys produced by Recycled UBC and Virgin Aluminum (폐알루미늄캔과 신지금으로 제조된 캔용 알루미늄 합금의 미세조직)

  • Lim Cha-Yang;Kang Seuk-Bong
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2002
  • Microstructure of aluminum alloys produced by the different mixing ratio of secondary ingot made by aluminum UBC (used beverage can) and virgin aluminum was investigated. The phase transitions of casted ingot by heat treatment were also studied. The alloys were melted at the electric resistance furnace, then casted using ceramic filter. Homogenization heat treatment was conducted at $615^{\circ}C$ for 10hrs to control cast microstructure. There were several kinds of phases, in as-cast condition, such as $\alpha$($Al_{12}$ $((Fe,Mn)_3$Si), $\beta$($Al_{6}$ (Fe,Mn)), and fine $Mg_2$Si phases. Especially, the amount of $\beta$-phase which was harmful in forming process was large. The $\beta$-Phase formed was transformed to u-phase by heat treatment. The fine $Mg_2$Si in the aluminum matix was also transformed to $\alpha$-phase by this heat treatment. Impurities filtered during casting process were identified as intermetallic compounds of Fe, Cu, Si.

Effect of magnesium sulphate solution on compressive strength and sorptivity of blended concrete

  • Jena, Trilochan;Panda, Kishor C.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.267-278
    • /
    • 2020
  • This paper reports on the result of an experimental investigation carried out to study the compressive strength and sorptivity properties of blended cement concrete exposed to 5% and 10% MgSO4 solution using fly ash (FA) and silpozz. Usually in sulphate environment the minimum grade of concrete is M30 and the mix design is done for target mean strength of 39 MPa. Silpozz is manufactured by burning of agro-waste rice husk in designed furnace in between 600° to 700℃ which is one of the main agricultural residues obtained from the outer covering of rice grains during the milling process. There are four mix series taken with control mix. The control mix made 0% replacement of FA and silpozz with Ordinary Portland Cement (OPC). The first mix series made 0% FA and 10-30% replacement of silpozz with OPC. The second mix series made with 10% FA and 10-40% replacement of silpozz with OPC. The third mix series made 20% FA and 10-30% replacement of silpozz with OPC and the fourth mix series made 30% FA and 10-20% silpozz replaced with OPC. The samples (cubes) are prepared and cured in normal water and 5% and 10% MgSO4 solution for 7, 28 and 90 days. The studied parameters are compressive strength and strength deterioration factor (SDF) for 7, 28 and 90 days. The water absorption and sorptivity tests have been done after 28 days of normal water and magnesium sulphate solution curing. The investigation reflects that the blended cement concrete incorporating FA and silpozz showing better resistance against MgSO4 solution when compared to normal water curing (NWC) samples.

Study of Physiochemical Characteristics and Effects of Bambusae Caulis in Liquamen Manufactured by Different Production Facilities on the Blood Sugar of the Mice Induced with Streptozotocin (추출설비 차이에 다른 죽력의 성붐 및 혈당강하효능 비교)

  • Jang Kyeong Seon;Oh Young Joon;Choi Chan Hun;Na Ki Oong;Wang So-Jin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1456-1462
    • /
    • 2004
  • This study was carried out to understand the effects of Bambusae Caulis in Liquamen manufactured by different production facilities on blood glucose of the mice induced with streptozotocin. Filtered Bambusae Caulis in Liquamen manufactured by two different facilitiesproduction process were used. The physiochemical properties of filtered Bambusae Caulis in Liquamen manufactured by two different facilities(300L×300W×400H and 700L×700W×800H electric furnace) were compared. Furthermore, the effects of filtered Bambusae Caulis in Liquamen were observed in terms of blood glucose, BUN and AL T in the mice induced with streptozotocin. The results were as follows : The pH value was the highest in L-BCL(E)B(pH 2.83) between manufactured by two different facilities. The L-BCL(E)B which observed low values of Hunter's color values show decreased concentration of methanol and phenolic compounds. The blood glucose contents was decreased in the experimental groups compared with the control. The amount of BUN and ALT did not show any differences between control and experimental group.

$H^{\infty}$ Controller Design for RTP System using Weighted Mixed Sensitivity Minimization (하중 혼합감도함수를 이용한 RTP 시스템의 $H^{\infty}$ 제어기 설계)

  • Lee, Sang-Kyung;Kim, Jong-Hae;Oh, Do-Chang;Park, Hong-Bae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.55-65
    • /
    • 1998
  • In industrial fields, RTP(rapid thermal processing) system is widely used for improving the oxidation and the annealing in semiconductor manufacturing process. The main control factors are temperature control of wafer and uniformity in the wafer. In this paper, we propose an $H^{\infty}$ controller design of RTP system satisfying robust stability and performance using weighted mixed sensitivity miniimization and loop shaping technique. And we need reduction technique because of the difficulty of implementation with the obtained high order controller for original model and reduced models, namely, Hankel, square-root balanced, and Schur balanced methods. An example is proposed to show the validity of the proposed method.

  • PDF

A New process for the Solid phase Crystallization of a-Si by the thin film heaters (박막히터를 사용한 비정질 실리콘의 고상결정화)

  • 김병동;정인영;송남규;주승기
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.168-173
    • /
    • 2003
  • Recently, according to the rapid progress in Flat-panel-display industry, there has been a growing interest in the poly-Si process. Compared with a-Si, poly-Si offers significantly high carrier mobility, so it has many advantages to high response rate in Thin Film Transistors (TFT's). We have investigated a new process for the high temperature Solid Phase Crystallization (SPC) of a-Si films without any damages on glass substrates using thin film heater. because the thin film heater annealing method is a very rapid thermal process, it has very low thermal budget compared to the conventional furnace annealing. therefore it has some characteristics such as selective area crystallization, high temperature annealing using glass substrates. A 500 $\AA$-thick a-Si film was crystallized by the heat transferred from the resistively heated thin film heaters through $SiO_2$ intermediate layer. a 1000 $\AA$-thick $TiSi_2$ thin film confined to have 15 $\textrm{mm}^{-1}$ length and various line width from 200 to 400 $\mu\textrm{m}$ was used as the thin film heater. By this method, we successfully crystallized 500 $\AA$-thick a-Si thin films at a high temperature estimated above $850^{\circ}C$ in a few seconds without any thermal deformation of g1ass substrates. These surprising results were due to the very small thermal budget of the thin film heaters and rapid thermal behavior such as fast heating and cooling. Moreover, we investigated the time dependency of the SPC of a-Si films by observing the crystallization phenomena at every 20 seconds during annealing process. We suggests the individual managements of nucleation and grain growth steps of poly-Si in SPC of a-Si with the precise control of annealing temperature. In conclusion, we show the SPC of a-Si by the thin film heaters and many advantages of the thin film heater annealing over other processes

Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice (면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용)

  • Cho, Jae-Hoon;Kim, Dong-Hwa;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.402-410
    • /
    • 2004
  • In this paper, an optimal design method of clonal selection based Fuzzy-Neural Networks (FNN) model for complex and nonlinear systems is presented. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. Also Advanced Clonal Selection (ACS) is proposed to find the parameters such as parameters of membership functions, learning rates and momentum coefficients. The proposed method is based on an Immune Algorithm (IA) using biological Immune System and The performance is improved by control of differentiation rate. Through that procedure, the antibodies are producted variously and the parameter of FNN are optimized by selecting method of antibody with the best affinity against antigens such as object function and limitation condition. To evaluate the performance of the proposed method, we use the time series data for gas furnace and traffic route choice process.

Image Processing System based on Deep Learning for Safety of Heat Treatment Equipment (열처리 장비의 Safety를 위한 딥러닝 기반 영상처리 시스템)

  • Lee, Jeong-Hoon;Lee, Ro-Woon;Hong, Seung-Taek;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.77-83
    • /
    • 2020
  • The heat treatment facility is in a situation where the scope of application of the remote IOT system is expanding due to the harsh environment caused by high heat and long working hours among the root industries. In this heat treatment process environment, the IOT middleware is required to play a pivotal role in interpreting, managing and controlling data information of IoT devices (sensors, etc.). Until now, the system controlled by the heat treatment remotely was operated with the command of the operator's batch system without overall monitoring of the site situation. However, for the safety and precise control of the heat treatment facility, it is necessary to control various sensors and recognize the surrounding work environment. As a solution to this, the heat treatment safety support system presented in this paper proposes a support system that can detect the access of the work manpower to the heat treatment furnace through thermal image detection and operate safely when ordering work from a remote location. In addition, an OPEN CV-based deterioration analysis system using DNN deep learning network was constructed for faster and more accurate recognition than general fixed hot spot monitoring-based thermal image analysis. Through this, we would like to propose a system that can be used universally in the heat treatment environment and support the safety management specialized in the heat treatment industry.

A Study on Phosphate Removal Characteristic of EAF Slag for Submarine Cover Material (EAF Slag의 해양복토제 활용을 위한$PO_4{^-}-P$ 제거특성에 관한 연구)

  • Kim, Jae-Won;Seo, Jong-Beom;Kang, Min-Gyeong;Kim, In-Deuk;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.258-264
    • /
    • 2010
  • This study estimated the possibility of phosphate removal characteristics to utilize EAF(electric arc furnace) slag as submarine cover material. The major phosphate removal mechanism was a certain formation of HAP precipitation occurred by the ionization reaction between $Ca^{2+}$ and $OH^-$, which were leached from the EAF Slag. Another phosphate removal mechanism was the adsortion of EAF slag surface. As a result of $PO_4{^-}-P$ removal characteristics using continuous column reactor, $PO_4{^-}-P$ concentration decreased rapidly after 3 days and 10 days later, it show under 0.5 ppm. The result as applied in real sea water, shows that the phosphate removal effects were 93~98% by the subaqueous sediment removal using the EAF slag. In conclusion, EAF slag is useful in $PO_4{^-}-P$ removal and control and it is possible to use without additional process like crush and selection.

Study on Incineration Behavior of Heavy Oil Fly Ash for Valuable Metal Recovery (유가금속(有價金屬) 회수(回收)를 위한 중유회(重油灰)의 연소거동(燃燒擧動)에 관한 연구(硏究))

  • Choi, Young-Yeon;Nam, Chul-Woo;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.22-29
    • /
    • 2009
  • To design and construct a moving bed stoker incinerator for incineration treatment of the domestic oil fly ash, operating condition and moving bed area of incinerator were determined by performing incinerate experiment of the oil fly ash in the muffle furnace which simulates moving bed stoker incinerator in all conditions. Incineration process of the oil fly ash could be divided into 3 stages, every stage needs the appropriate operating condition for effective incineration. The optimum content of water in the heavy oil fly ash was found to be 20 wt% to prevent the ash from flying and reduce the volume. Science combustion rate of oil fly ash depends on the oxygen content, the incinerator must have a equipment to control the oxygen content in the combustion air. The optimum temperature was $750{\sim}800^{\circ}C$ in order to prevent adhesion to the stocker and evaporation of metal compounds of low melting point. Uniform combustion reaction and acceleration of combustion rate required agitation during the combustion of oil fly ash. The incineration rate was $12.53kg/m^2hr$ and the working area of moving bed incinerator was found to be $60m^2$ to incinerate 18 tons of oil fly ash per day.