• Title/Summary/Keyword: Fungal structure

Search Result 156, Processing Time 0.031 seconds

Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans

  • Jung, Ahjin;Yun, Ji-Sook;Kim, Shinae;Kim, Sang Ryong;Shin, Minsang;Cho, Dong Hyung;Choi, Kwang Shik;Chang, Jeong Ho
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.56-66
    • /
    • 2019
  • Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of $2.5{\AA}$. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (${\alpha}1-{\beta}1$) and with the ${\alpha}3$ helix, which appeared to stabilize the dimerization of CaHINT. In the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.

A Study of Arctic Microbial Community Structure Response to Increased Temperature and Precipitation by Phospholipid Fatty Acid Analysis

  • Sungjin Nam;Ji Young Jung
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.2
    • /
    • pp.86-94
    • /
    • 2023
  • Climate change is more rapid in the Arctic than elsewhere in the world, and increased precipitation and warming are expected cause changes in biogeochemical processes due to altered microbial communities and activities. It is crucial to investigate microbial responses to climate change to understand changes in carbon and nitrogen dynamics. We investigated the effects of increased temperature and precipitation on microbial biomass and community structure in dry tundra using two depths of soil samples (organic and mineral layers) under four treatments (control, warming, increased precipitation, and warming with increased precipitation) during the growing season (June-September) in Cambridge Bay, Canada (69°N, 105°W). A phospholipid fatty acid (PLFA) analysis method was applied to detect active microorganisms and distinguish major functional groups (e.g., fungi and bacteria) with different roles in organic matter decomposition. The soil layers featured different biomass and community structure; ratios of fungal/bacterial and gram-positive/-negative bacteria were higher in the mineral layer, possibly connected to low substrate quality. Increased temperature and precipitation had no effect in either layer, possibly due to the relatively short treatment period (seven years) or the ecosystem type. Mostly, sampling times did not affect PLFAs in the organic layer, but June mineral soil samples showed higher contents of total PLFAs and PLFA biomarkers for bacteria and fungi than those in other months. Despite the lack of response found in this investigation, long-term monitoring of these communities should be maintained because of the slow response times of vegetation and other parameters in high-Arctic ecosystems.

Two-year field monitoring shows little evidence that transgenic potato containing ABF3 significantly alters its rhizosphere microbial community structure

  • Nam, Ki Jung;Kim, Hyo-Jeong;Nam, Kyong-Hee;Pack, In Soon;Kim, Soo Young;Kim, Chang-Gi
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • Background: Plants over-expressing Arabidopsis ABF3 (abscisic acid-responsive element-binding factor 3) have enhanced tolerance to various environmental stresses, especially drought. Using terminal restriction fragment length polymorphism (T-RFLP) analysis, we compared the rhizosphere-associated structures of microbial communities for transgenic potato containing this gene and conventional "Jopoong" plants. Results: During a 2-year field experiment, fungal richness, evenness, and diversity varied by year, increasing in 2010 when a moderate water deficit occurred. By contrast, the bacterial richness decreased in 2010 while evenness and diversity were similar in both years. No significant difference was observed in any indices for either sampling time or plant line. Although the composition of the microbial communities (defined as T-RF profiles) changed according to year and sampling time, differences were not significant between the transgenic and control plants. Conclusions: The results in this study suggest that the insertion of ABF3 into potato has no detectable (by current T-RFLP technique) effects on rhizosphere communities, and that any possible influences, if any, can be masked by seasonal or yearly variations.

Genetic diversity of Fusarium graminearum from rice in Korea

  • Chang, In-Young;Yun, Sung-Hwan;Lee, Yin-Won
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.123.2-124
    • /
    • 2003
  • Fusarium graminearum (telomorph:Gibberella zeae), an important fungal pathogen of cereal crops with ubiquitous geographic distribution, produces mycotoxins on diseased crops that has threaten human and animal health. Recently severe epidemics of scab diseases of barley and rice by this fungus occurred in Korea, causing serious economic losses. To determine genetic diversity of F. graminearum from rice in Korea, a total of 269 isolates were obtained from Southern part of Korea during 2001-2002. A phylogenetic tree of the isolates was constructed by using amplified fragment length polymorphism (AFLP). Population structure of the rice isolates consists of a single lineage (lineage 6). Frequency of female fertility among these Isolates was relatively low (37%) compared to that among lineage 7 isolates from Korean corn. PCR amplification using chemotype specific primers derived from Tri7 and Tri13 genes at the trichothecene biosynthesis gene cluster revealed that most isolates (260) were NIV chemotype;9 isolates were identified as DON chemotype by Tri13 but as either NIV chemotype or unknown by Tri7. The result of chemical analysis also supported the chemotype determination;all of the NIV chemotype isolates produced NIV, whereas the 9 isolates produce either DON or no toxin.

  • PDF

Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2

  • Ellouze, Olfa Elleuch;Loukil, Sana;Marzouki, Mohamed Nejib
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.653-658
    • /
    • 2011
  • Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (${\beta}5$ and ${\beta}6$ strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing $E_{86}$ and $E_{178}$ residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.

Observation and Distribution of Ectomycorrhizal Fungi in Pinus Roots

  • Chung, Hung-Chae;Kim, Dong-Hun;Cho, Nam-Seok;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Detailed structures of ectomycorrhizae formed in Pinus roots were observed with various microscopes: light, fluorescence, and scanning electron microscopes. The mantles and Hartig nets commonly found in the structure of ectomycorrhiza were newly observed according to developmental stage by various staining. The mycelia were observed to be composed of coiled types on the surface of epidermal root during early stage and fused to form mantles of smooth fungal layers, loosing mycelia with some viscous liquid secreted. The ectomycorrhizal hyphae in anatomical roots penetrated the cortical layer and formed obviously mantle and Hartig net. The round spots of ectomycorrhizal mycelia were observed morphological distribution from the cortical layer to vascular bundle of stele in the ectomycorrhizal roots of Pinus species and especially scattered at the area of meristem at the root tip as longitudinal sections. Those mycelia penetrated seemed to move into other roots by means of vascular bundle of ectomycorrhizal roots and newly form ectomycorrhizal roots of dichotomous branches.

Influence of the Hydrophobic Amino Acids in the N- and C-Terminal Regions of Pleurocidin on Antifungal Activity

  • Lee, June-Young;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1192-1195
    • /
    • 2010
  • To investigate the influence of the N- or C-terminal regions of pleurocidin (Ple) peptide on antifungal activity, four analogs partially truncated in the N- or C-terminal regions were designed and synthesized. Circular dichroism (CD) spectroscopy demonstrated that all the analogs maintained an alpha-helical structure. The antifungal susceptibility testing also showed that the analogs exhibited antifungal activities against human fungal pathogens, without hemolytic effects against human erythrocytes. The result further indicated that the analogs had discrepant antifungal activities [Ple>Ple (1-22)>Ple (4-25)>Ple (1- 19)>Ple (7-25)] and that N-terminal deletion affected the activities much more than C-terminal deletion. Hydrophobicity [Ple>Ple (1-22)>Ple (4-25)>Ple (1-19)> Ple (7-25)] was thought to have been one of the consistent factors that influenced these activity patterns, rather than the other primary factors like the helicity [Ple>Ple (4-25) >Ple (1-22)>Ple (1-19)>Ple (7-25)] or the net charge [Ple=Ple (4-25)=Ple (7-25)>Ple (1-22)=Ple (1-19)] of the peptides. In conclusion, the hydrophobic amino acids in the N-terminal region of Ple is more crucial for antifungal activity than those in the C-terminal region.

Endophytic Diaporthe sp. ED2 Produces a Novel Anti-Candidal Ketone Derivative

  • Yenn, Tong Woei;Ring, Leong Chean;Nee, Tan Wen;Khairuddean, Melati;Zakaria, Latiffah;Ibrahim, Darah
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1065-1070
    • /
    • 2017
  • This study aimed to examine the anti-candidal efficacy of a novel ketone derivative isolated from Diaporthe sp. ED2, an endophytic fungus residing in medicinal herb Orthosiphon stamieus Benth. The ethyl acetate extract of the fungal culture was separated by open column and reverse phase high-performance liquid chromatography (HPLC). The eluent at retention time 5.64 min in the HPLC system was the only compound that exhibited anti-candidal activity on Kirby-Bauer assay. The structure of the compound was also elucidated by nuclear magnetic resonance and spectroscopy techniques. The purified anti-candidal compound was obtained as a colorless solid and characterized as 3-hydroxy-5-methoxyhex-5-ene-2,4-dione. On broth microdilution assay, the compound also exhibited fungicidal activity on a clinical strain of Candida albicans at a minimal inhibitory concentration of $3.1{\mu}g/ml$. The killing kinetic analysis also revealed that the compound was fungicidal against C. albicans in a concentration- and time-dependent manner. The compound was heat-stable up to $70^{\circ}C$, but its anti-candidal activity was affected at pH 2.

Antifungal Effect of Amentoflavone derived from Selaginella tamariscina

  • Jung, Hyun-Jun;Sung, Woo-Sang;Yeo, Soo-Hwan;Kim, Hyun-Soo;Lee, In-Seon;Woo, Eun-Rhan;Lee, Dong-Gun
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.746-751
    • /
    • 2006
  • Amentoflavone is a plant biflavonoid that was isolated from an ethyl acetate extract of the whole plant of Selaginella tamariscina (Beauv.) spring. 1D and 2D NMR spectroscopy including DEPT, HMQC, and HMBC were used to determine its structure. Amentoflavone exhibited potent antifungal activity against several pathogenic fungal strains but had a very low hemolytic effect on human erythrocytes. In particular, amentoflavone induced the accumulation of intracellular trehalose on C. albicans as a stress response to the drug, and disrupted the dimorphic transition that forms pseudo-hyphae during pathogenesis. In conclusion, amentoflavone has great potential to be a lead compound for the development of antifungal agents.

Ultrastructural Process of Protoplast Fusion Between Lentinula edodes and Coriolus versicolor

  • Kim, Chae-Kyun;Kim, Byong-Kak
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.15-18
    • /
    • 2001
  • Protoplast fusion is a useful technique for establishing fungal hybrids to overcome the natural barriers. The ultrastructure of protoplast and its fusion process were observed using a scanning electron microscopy(SEM) and a transmission electron microscopy(TEM). The protoplasts were variable in size from $0.5{\sim}15{\mu}m$ in diameter, and the mean diameter was about $3{\sim}5{\mu}m$. It was impossible to discriminate protoplasts of Lentinula edodes from protoplasts of Coriolus versicolor by size and surface structure. Big aggregates of the dehydrated protoplasts were observed, after polyethylene glycol 4000 treatment. Nucleus, mitochondria, lipid granules and various vesicles having granules were scattered in the cytoplasm. The vesicles were heterogeneous in size and vary from one protoplast to another. The fused membrane layer of the two protoplasts was observed. Time protoplast membrane contact and reorganization of membrane components were essential condition for protoplast fusion. Transmission electron micrograph showed fused protoplasts and flattening of the cells in the area of the membrane contact. We hope that our electron microscopic observations provide some insights into the understanding of the fusion process of protoplast in fungi.

  • PDF