References
- Annis, S. L. and Goodwin, P. H. (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes in plant pathogenic fungi. Eur. J. Plant Pathol. 103, 1-14. https://doi.org/10.1023/A:1008656013255
- Bolton, M. D., Thomma, B. P. H. J. and Nelson, B. D. (2006) Pathogen profile Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7, 1-16. https://doi.org/10.1111/j.1364-3703.2005.00316.x
-
Gomez-Gomez, E., Ruiz-Roldan, M. C., Roncero, M. I. G., Di Pietro, A. and Hera, C. (2002) Role in pathogenesis of two endo-
$\beta$ -1,4 xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genetics and Biology. 35, 2213-2224. - Sunna, A. and Antranikian, G. (1997) Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39-67. https://doi.org/10.3109/07388559709146606
- Gilbert, H. J. and Hazlwood, G. P. (1993) Bacterial cellulases and xylanases. J. General Microbiol. 139, 187-194 https://doi.org/10.1099/00221287-139-2-187
- Hrmova, M., Biely, P., Vrsanka, M. and Petrakova, E. (1984) Induction of cellulose and xylan-degrading enzyme complex in yeast Trichosporon cutaneum. Arch. Microbiol. 161, 371-376.
- Henrissat, B. and Bairoch, A. (1993) New families in the classification of glycosyl hydrolyses based on amino acid sequence similarities. Biochem. J. 293, 781-788. https://doi.org/10.1042/bj2930781
- White, A., Tull, D., Johns, K., Withers, S. G. and Rose, D. R. (1996) Crystallographic observation of a covalent catalytic intermediate in a beta-glycosidase. Nature Struct. Biol. 3, 149-154. https://doi.org/10.1038/nsb0296-149
- Torronen, A., Harkki, A. and Rouvinen, J. (1994) Three dimensional structure of endo-1,4-L-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J. 13, 2493-2501
- Boland, G. J. and Hall, R. (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16, 93-108 https://doi.org/10.1080/07060669409500766
- Lumsden, R. D. (1969) Sclerotinia sclerotiorum infection of bean and the production of cellulase. Phytopathology 59, 653-657.
- Riou, C., Freyssinet, G. and Fevre, M. (1991) Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. App. Environ. Microbiol. 57, 1478-1484.
- Riou, C., Freyssinet, G. and Fevre, M. (1992) Purification and characterization of extracellular pectinolytic enzymes produced by Sclerotinia sclerotiorum. App. Environ. Microbiol. 58, 578-583
- Poussereau, N., Creton, S., Billon-Grand, G., Rascle, C. and Fevre, M. (2001) Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147, 717-726. https://doi.org/10.1099/00221287-147-3-717
-
Smaali, M. I., Gargouri, M., Legoy, M. D., Maugard, T., Limam, F. and Marzouki, M. N. (2003) A
$\beta$ -glucosidase from Sclerotinia sclerotiorum, Biochemical characterization and use in oligosaccharide Synthesis. App. Biochem. Biotechnol. 111, 1-15. https://doi.org/10.1385/ABAB:111:1:1 -
Ben Abdelmalek-Khedher, I., Camino-Urdaci, M., Limam, F., Schmitter, J. M., Marzouki, M. N. and Bressollier, P. (2008) Purification, Characterization and Partial Primary Sequence of a Major-Maltotriose-producing
$\alpha$ -Amylase, ScAmy43, from Sclerotinia sclerotiorum. J. Microbio. Biotechnol. 18, 1555-1563. - Ellouze, O., Mejri, M., Smaali, I., Limam, F. and Marzouki, M. N. (2007) Induction, properties and application of xylanase activity from Sclerotinia sclerotiorum S2 fungus. J. Food Biochem. 31, 1-137. https://doi.org/10.1111/j.1745-4514.2007.00094.x
- Ellouze, O., Fattouch, S., Mestiri, F., Aniba, M. R. and Marzouki, M. N. (2008) Optimization of extracellular xylanase production by Sclerotinia sclerotiorum S2 using factorial design. Indian J. Biochem. Biophys. 45, 404-405.
- Sapag, A., Wouters, J., Lambert, C., Ioannes, P., Eyzaguirre, J. and Depiereux, E. (2002) The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogentic relationships. J. Biotechnol. 95, 109-131. https://doi.org/10.1016/S0168-1656(02)00002-0
-
Brito, N., Espino, J. J. and Gonzalez, C. (2006) The endo-
$\beta$ -1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol. Plant Microbe Interact. 19, 25-32. https://doi.org/10.1094/MPMI-19-0025 - Lubeck, P. S., Paulin, L., Degefu, Y., Lubeck, M., Alekhina, I., Bulat, S. A. and Collinge, D. B. (1997) PCR cloning, DNA sequencing and phylogenetic analysis of a xylanase gene from the phytopathogenic fungus Ascochyta pisi Lib Physiol. Molecular Plant Pathol. 51, 377-389. https://doi.org/10.1006/pmpp.1997.0126
- Kimura, T., Ito, J., Makino, A., Kondo, H., Karita, S., sakka, K. and Ohmiya, K. (2000) Purification, Characterization, and Molecular cloning of acidophilic Xylanase from Penicillium sp 40. Biosci. Biotechnol. Biochem. 64, 1230-1237. https://doi.org/10.1271/bbb.64.1230
- Gurr, S. J., Unkles, S. E., and Kinghoun, J. R. (1987) The structure and organization of nuclear genes of filamentous fungi: Gene Structure in Eukaryotic Microbe; in Gurr, S. J., Unkles, S. E. and Kinghoun, J. R. eds., pp. 93-139, IRL Press, Oxford.
- Jalving, R., Bron, P., Kester, H. C. M., Visser, J. and Schaap, P. J. (2002) Cloning of a prolidase gene from Aspergillus nidulans and charcterisation of its product. Molec. Genetic Genomics 267, 218-222. https://doi.org/10.1007/s00438-002-0655-8
-
Brito, N., Espino, J. J. and Gonzalez, C. (2006) The endo-
$\beta$ -1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol. Plant Microbe Interact. 19, 25-32. https://doi.org/10.1094/MPMI-19-0025 - Degefu, Y., Lohtander, K. and Paulin, L. (2004) Expression patterns and phylogenetic analysis of two xylanase genes (htxyl1 and htxyl2) from Helminthosporium turcicum, the cause of northern leaf blight of maize. Biochimie 86, 83-90. https://doi.org/10.1016/j.biochi.2004.01.001
- Wagner, J. C., Escher, C. and Wolf, D. H. (1987) Some characteristics of hormones (pheromones) processing enzymes in Yeast. FEBS Lett. 218, 31-34. https://doi.org/10.1016/0014-5793(87)81012-8
- Jalving, R., Van de Vondervoort, P. J. I., Visser, J. and Schaap, P. J. (2000) Characterization of the kexin-like maturase of Aspergillus niger. App. Environ. Microbiol. 66, 363-368. https://doi.org/10.1128/AEM.66.1.363-368.2000
- Li, X. L. and Ljungdahl, L. G. (1994) Cloning sequencing and regulation of xylanase gene from the fungus Aureobasiduim pullulans Y2311-1 App. Environ. Microbiol. 59, 3212-3218.
- Orlean, P. (1990) Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation and N glycosylation of protein in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 5796-5805. https://doi.org/10.1128/MCB.10.11.5796
- Spiro, R. G. (2002) Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptides bonds. Glycobiology 12, 43-56. https://doi.org/10.1093/glycob/12.4.43R
- Temporini, C., Calleri, E., Massolin, G. and Caccialanza, G. (2008) Integrate analytical strategies for the study of phophorylation and glycosylation in proteins. Mass Spectrom. Rev. 27, 207-236. https://doi.org/10.1002/mas.20164
- Balakrishnan, H., Satyanarayana, L., Gaikwad, S. M. and Suresh, C. G. (2006) Structural and active site modification studies implicate Glu, Trp and Arg in the activity of xylanase from alkalophilic Bacillus sp. (NCL 87-6-10). Enzym. Microbiol. Technol. 39, 67-73. https://doi.org/10.1016/j.enzmictec.2005.09.010
- Wakarchuk, W. W., Campbell, R., Sung, W. L., Davoodi, J. and Yaguchi, M. (1994) Mutational and crystallographic analysis of the active site residues of the Bacillus circulans xylanase. Protein Science 3, 467-475.
-
Torronen, A. and Rouvinen, J. (1997) Structural and functional properties of low molecular weight endo-1-4-
$\beta$ -xylanases. J. Biotechnol. 57, 137-149. https://doi.org/10.1016/S0168-1656(97)00095-3 - Gomes, J., Gomes, I., Kreiner, W., Esterbauer, H., Sinner, M. and Steiner, W. (1993) Production of high level of cellulase- free and thermostable xylanase by a wild strain of Thermomyces lanuginosus using beechwood xylan. J. Biotechnol. 30, 283-297. https://doi.org/10.1016/0168-1656(93)90145-D
- Combet, C., Jambon, M., Deleage, G. and Geourjon, C. (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18, 213-214. https://doi.org/10.1093/bioinformatics/18.1.213
- Kaur, H. and Raghava, G. P. S. (2004) Role of evolutionary information in prediction of aromatic-backbone NH interactions in proteins. FEBS Lett. 564, 47-57. https://doi.org/10.1016/S0014-5793(04)00305-9
- Al-samarrai, T. H. and Schmid, J. (2000) A simple method for extraction of fungal genomic DNA. Lett. App. Microbiol. 30, 53-56. https://doi.org/10.1046/j.1472-765x.2000.00664.x
Cited by
- Proteomic analysis reveals the potential involvement of xylanase from Pyrenophora teres f. teres in net form net blotch disease of barley vol.43, pp.6, 2014, https://doi.org/10.1007/s13313-014-0314-7
- Cloning and characterization of an endo--1,4-xylanase gene from Colletotrichum lindemuthianum and phylogenetic analysis of similar genes from phytopathogenic fungus vol.10, pp.32, 2016, https://doi.org/10.5897/AJMR2016.8185
- Protein homology modeling, docking, and phylogenetic analyses of an endo-1,4-β-xylanase GH11 of Colletotrichum lindemuthianum vol.16, pp.6, 2017, https://doi.org/10.1007/s11557-017-1291-3
- Fungal growth, proteinaceous toxins and virulence of Pyrenophora teres f. teres on barley vol.43, pp.5, 2014, https://doi.org/10.1007/s13313-014-0295-6
- vol.217, pp.2, 2017, https://doi.org/10.1111/nph.14842