DOI QR코드

DOI QR Code

Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2

  • Ellouze, Olfa Elleuch (Biological Engineering Unit, National Institute of Applied Sciences and Technology (I.N.S.A.T.)) ;
  • Loukil, Sana (Biological Engineering Unit, National Institute of Applied Sciences and Technology (I.N.S.A.T.)) ;
  • Marzouki, Mohamed Nejib (Biological Engineering Unit, National Institute of Applied Sciences and Technology (I.N.S.A.T.))
  • Received : 2011.05.18
  • Accepted : 2011.07.26
  • Published : 2011.10.31

Abstract

Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (${\beta}5$ and ${\beta}6$ strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing $E_{86}$ and $E_{178}$ residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.

Keywords

References

  1. Annis, S. L. and Goodwin, P. H. (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes in plant pathogenic fungi. Eur. J. Plant Pathol. 103, 1-14. https://doi.org/10.1023/A:1008656013255
  2. Bolton, M. D., Thomma, B. P. H. J. and Nelson, B. D. (2006) Pathogen profile Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7, 1-16. https://doi.org/10.1111/j.1364-3703.2005.00316.x
  3. Gomez-Gomez, E., Ruiz-Roldan, M. C., Roncero, M. I. G., Di Pietro, A. and Hera, C. (2002) Role in pathogenesis of two endo-$\beta$-1,4 xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genetics and Biology. 35, 2213-2224.
  4. Sunna, A. and Antranikian, G. (1997) Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39-67. https://doi.org/10.3109/07388559709146606
  5. Gilbert, H. J. and Hazlwood, G. P. (1993) Bacterial cellulases and xylanases. J. General Microbiol. 139, 187-194 https://doi.org/10.1099/00221287-139-2-187
  6. Hrmova, M., Biely, P., Vrsanka, M. and Petrakova, E. (1984) Induction of cellulose and xylan-degrading enzyme complex in yeast Trichosporon cutaneum. Arch. Microbiol. 161, 371-376.
  7. Henrissat, B. and Bairoch, A. (1993) New families in the classification of glycosyl hydrolyses based on amino acid sequence similarities. Biochem. J. 293, 781-788. https://doi.org/10.1042/bj2930781
  8. White, A., Tull, D., Johns, K., Withers, S. G. and Rose, D. R. (1996) Crystallographic observation of a covalent catalytic intermediate in a beta-glycosidase. Nature Struct. Biol. 3, 149-154. https://doi.org/10.1038/nsb0296-149
  9. Torronen, A., Harkki, A. and Rouvinen, J. (1994) Three dimensional structure of endo-1,4-L-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J. 13, 2493-2501
  10. Boland, G. J. and Hall, R. (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16, 93-108 https://doi.org/10.1080/07060669409500766
  11. Lumsden, R. D. (1969) Sclerotinia sclerotiorum infection of bean and the production of cellulase. Phytopathology 59, 653-657.
  12. Riou, C., Freyssinet, G. and Fevre, M. (1991) Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. App. Environ. Microbiol. 57, 1478-1484.
  13. Riou, C., Freyssinet, G. and Fevre, M. (1992) Purification and characterization of extracellular pectinolytic enzymes produced by Sclerotinia sclerotiorum. App. Environ. Microbiol. 58, 578-583
  14. Poussereau, N., Creton, S., Billon-Grand, G., Rascle, C. and Fevre, M. (2001) Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147, 717-726. https://doi.org/10.1099/00221287-147-3-717
  15. Smaali, M. I., Gargouri, M., Legoy, M. D., Maugard, T., Limam, F. and Marzouki, M. N. (2003) A $\beta$-glucosidase from Sclerotinia sclerotiorum, Biochemical characterization and use in oligosaccharide Synthesis. App. Biochem. Biotechnol. 111, 1-15. https://doi.org/10.1385/ABAB:111:1:1
  16. Ben Abdelmalek-Khedher, I., Camino-Urdaci, M., Limam, F., Schmitter, J. M., Marzouki, M. N. and Bressollier, P. (2008) Purification, Characterization and Partial Primary Sequence of a Major-Maltotriose-producing $\alpha$-Amylase, ScAmy43, from Sclerotinia sclerotiorum. J. Microbio. Biotechnol. 18, 1555-1563.
  17. Ellouze, O., Mejri, M., Smaali, I., Limam, F. and Marzouki, M. N. (2007) Induction, properties and application of xylanase activity from Sclerotinia sclerotiorum S2 fungus. J. Food Biochem. 31, 1-137. https://doi.org/10.1111/j.1745-4514.2007.00094.x
  18. Ellouze, O., Fattouch, S., Mestiri, F., Aniba, M. R. and Marzouki, M. N. (2008) Optimization of extracellular xylanase production by Sclerotinia sclerotiorum S2 using factorial design. Indian J. Biochem. Biophys. 45, 404-405.
  19. Sapag, A., Wouters, J., Lambert, C., Ioannes, P., Eyzaguirre, J. and Depiereux, E. (2002) The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogentic relationships. J. Biotechnol. 95, 109-131. https://doi.org/10.1016/S0168-1656(02)00002-0
  20. Brito, N., Espino, J. J. and Gonzalez, C. (2006) The endo-$\beta$-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol. Plant Microbe Interact. 19, 25-32. https://doi.org/10.1094/MPMI-19-0025
  21. Lubeck, P. S., Paulin, L., Degefu, Y., Lubeck, M., Alekhina, I., Bulat, S. A. and Collinge, D. B. (1997) PCR cloning, DNA sequencing and phylogenetic analysis of a xylanase gene from the phytopathogenic fungus Ascochyta pisi Lib Physiol. Molecular Plant Pathol. 51, 377-389. https://doi.org/10.1006/pmpp.1997.0126
  22. Kimura, T., Ito, J., Makino, A., Kondo, H., Karita, S., sakka, K. and Ohmiya, K. (2000) Purification, Characterization, and Molecular cloning of acidophilic Xylanase from Penicillium sp 40. Biosci. Biotechnol. Biochem. 64, 1230-1237. https://doi.org/10.1271/bbb.64.1230
  23. Gurr, S. J., Unkles, S. E., and Kinghoun, J. R. (1987) The structure and organization of nuclear genes of filamentous fungi: Gene Structure in Eukaryotic Microbe; in Gurr, S. J., Unkles, S. E. and Kinghoun, J. R. eds., pp. 93-139, IRL Press, Oxford.
  24. Jalving, R., Bron, P., Kester, H. C. M., Visser, J. and Schaap, P. J. (2002) Cloning of a prolidase gene from Aspergillus nidulans and charcterisation of its product. Molec. Genetic Genomics 267, 218-222. https://doi.org/10.1007/s00438-002-0655-8
  25. Brito, N., Espino, J. J. and Gonzalez, C. (2006) The endo-$\beta$-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol. Plant Microbe Interact. 19, 25-32. https://doi.org/10.1094/MPMI-19-0025
  26. Degefu, Y., Lohtander, K. and Paulin, L. (2004) Expression patterns and phylogenetic analysis of two xylanase genes (htxyl1 and htxyl2) from Helminthosporium turcicum, the cause of northern leaf blight of maize. Biochimie 86, 83-90. https://doi.org/10.1016/j.biochi.2004.01.001
  27. Wagner, J. C., Escher, C. and Wolf, D. H. (1987) Some characteristics of hormones (pheromones) processing enzymes in Yeast. FEBS Lett. 218, 31-34. https://doi.org/10.1016/0014-5793(87)81012-8
  28. Jalving, R., Van de Vondervoort, P. J. I., Visser, J. and Schaap, P. J. (2000) Characterization of the kexin-like maturase of Aspergillus niger. App. Environ. Microbiol. 66, 363-368. https://doi.org/10.1128/AEM.66.1.363-368.2000
  29. Li, X. L. and Ljungdahl, L. G. (1994) Cloning sequencing and regulation of xylanase gene from the fungus Aureobasiduim pullulans Y2311-1 App. Environ. Microbiol. 59, 3212-3218.
  30. Orlean, P. (1990) Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation and N glycosylation of protein in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 5796-5805. https://doi.org/10.1128/MCB.10.11.5796
  31. Spiro, R. G. (2002) Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptides bonds. Glycobiology 12, 43-56. https://doi.org/10.1093/glycob/12.4.43R
  32. Temporini, C., Calleri, E., Massolin, G. and Caccialanza, G. (2008) Integrate analytical strategies for the study of phophorylation and glycosylation in proteins. Mass Spectrom. Rev. 27, 207-236. https://doi.org/10.1002/mas.20164
  33. Balakrishnan, H., Satyanarayana, L., Gaikwad, S. M. and Suresh, C. G. (2006) Structural and active site modification studies implicate Glu, Trp and Arg in the activity of xylanase from alkalophilic Bacillus sp. (NCL 87-6-10). Enzym. Microbiol. Technol. 39, 67-73. https://doi.org/10.1016/j.enzmictec.2005.09.010
  34. Wakarchuk, W. W., Campbell, R., Sung, W. L., Davoodi, J. and Yaguchi, M. (1994) Mutational and crystallographic analysis of the active site residues of the Bacillus circulans xylanase. Protein Science 3, 467-475.
  35. Torronen, A. and Rouvinen, J. (1997) Structural and functional properties of low molecular weight endo-1-4-$\beta$-xylanases. J. Biotechnol. 57, 137-149. https://doi.org/10.1016/S0168-1656(97)00095-3
  36. Gomes, J., Gomes, I., Kreiner, W., Esterbauer, H., Sinner, M. and Steiner, W. (1993) Production of high level of cellulase- free and thermostable xylanase by a wild strain of Thermomyces lanuginosus using beechwood xylan. J. Biotechnol. 30, 283-297. https://doi.org/10.1016/0168-1656(93)90145-D
  37. Combet, C., Jambon, M., Deleage, G. and Geourjon, C. (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18, 213-214. https://doi.org/10.1093/bioinformatics/18.1.213
  38. Kaur, H. and Raghava, G. P. S. (2004) Role of evolutionary information in prediction of aromatic-backbone NH interactions in proteins. FEBS Lett. 564, 47-57. https://doi.org/10.1016/S0014-5793(04)00305-9
  39. Al-samarrai, T. H. and Schmid, J. (2000) A simple method for extraction of fungal genomic DNA. Lett. App. Microbiol. 30, 53-56. https://doi.org/10.1046/j.1472-765x.2000.00664.x

Cited by

  1. Proteomic analysis reveals the potential involvement of xylanase from Pyrenophora teres f. teres in net form net blotch disease of barley vol.43, pp.6, 2014, https://doi.org/10.1007/s13313-014-0314-7
  2. Cloning and characterization of an endo--1,4-xylanase gene from Colletotrichum lindemuthianum and phylogenetic analysis of similar genes from phytopathogenic fungus vol.10, pp.32, 2016, https://doi.org/10.5897/AJMR2016.8185
  3. Protein homology modeling, docking, and phylogenetic analyses of an endo-1,4-β-xylanase GH11 of Colletotrichum lindemuthianum vol.16, pp.6, 2017, https://doi.org/10.1007/s11557-017-1291-3
  4. Fungal growth, proteinaceous toxins and virulence of Pyrenophora teres f. teres on barley vol.43, pp.5, 2014, https://doi.org/10.1007/s13313-014-0295-6
  5. vol.217, pp.2, 2017, https://doi.org/10.1111/nph.14842