• Title/Summary/Keyword: Fungal metabolites

Search Result 139, Processing Time 0.023 seconds

FUNGAL EXTRACELLULAR POLYSACCHARIDES INVOLVED IN RECYCLING OF METABOLITES AND OSMOTOLERANCE OF PENICILLIUM FELLUTANUM : APPLICATION OF $^{13}$ C-NMR SPECTROSCOPY FOR THE STUDY ON FUNGAL PHYSIOLOGY AND METABOLISM

  • Park, Yong-Il;Gander, John.-E.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.208-213
    • /
    • 2000
  • Penicillium fellutanum produces a phosphorylated, choline-containing extracellular peptido-polysaccharide, peptidophosphogalactomannan (pPxGM) (8). The $\^$13/C-methyl labeled pPxGM ([methyl-$\^$13/C]pPxGM) was prepared from the cultures supplemented with L-[methyl-$\^$13/C]methionine or [2-$\^$13/C]glycine and was used as a probe to monitor the fate of phosphocholine in this polymer. Addition of purified [methyl-$\^$l3/C]pPxGM to growing cultures in low phosphate medium resulted in the disappearance of [methyl-$\^$13/C]phosphocholine and -N,N'-dimethyl-phosphoethanolamine from the added [methyl-$\^$13/C]pPxGM. Two $\^$l3/C-methyl-enriched cytoplasmic solutes, choline-O-sulfate and glycine betaine, were found in mycelial extracts, suggesting that phosphocholine-containing extracellular pPxGM of P.fellutanum is a precursor of intracellular choline-O-sulfate and glycine betaine and thus of phosphatydilcholine (l0). $\^$13/C-Methyl-labeled cells grown in 3 M NaCl-containing medium showed 2.6- and 22-fold more accumulation of $\^$13/C-methyl labeled choline-O-sulfate and glycine betaine, respectively, originated from the extracellular [$\^$13/C-methyl]pPxGM than those grown without added NaCl. The results suggest that, in addition to glycerol and erythritol, glycine betaine and choline-O-sulfate and thus choline are also osmoprotectants and hence that pPxGM is involved in osmotolerance of this fungus (11). Taken collectively, the $\^$l3/C- and $\^$31/P-NMR analyses of cytosolic solute pools and structural modulation of extracellular pPxGM corresponding to environmental stimuli in P. fellutanum, provided evidence that pPxGM is involved in cellular choline metabolism, osmotolerance, and recycling of metabolites.

  • PDF

The Antifungal Test: An Efficient Screening Tool for the Discovery of Microbial Metabolites with Respiratory Inhibitory Activity

  • Han, Jae Woo;Kim, Bomin;Oh, Mira;Choi, Jaehyuk;Choi, Gyung Ja;Kim, Hun
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.326-329
    • /
    • 2020
  • Valuable natural compounds produced by a variety of microorganisms can be used as lead molecules for development of new agrochemicals. Furthermore, high-throughput in vitro screening systems with specific modes of action can increase the probability of discovery of new fungicides. In the current study, a rapid assay tested with various microbes was developed to determine the degree of respiratory inhibition of Saccharomyces cerevisiae in two different liquid media, YG (containing a fermentable carbon source) and NFYG (containing a non-fermentable carbon source). Based on this system, we screened 100 fungal isolates that were classified into basidiomycetes, to find microbial secondary metabolites that act as respiratory inhibitors. Consequently, of the 100 fungal species tested, the culture broth of an IUM04881 isolate inhibited growth of S. cerevisiae in NFYG medium, but not in YG medium. The result is comparable to that from treatment with kresoxim-methyl used as a control, suggesting that the culture broth of IUM04881 isolate might contain active compounds showing the inhibition activity for respiratory chain. Based on the assay developed in this study and spectroscopic analysis, we isolated and identified an antifungal compound (-)-oudemansin A from culture broth of IUM04881 that is identified as Oudemansiella venosolamellata. This is the first report that (-)-oudemansin A is identified from O. venosolamellata in Korea. Taken together, the development of this assay will accelerate efforts to find and identify natural respiratory inhibitors from various microbes.

Bioactive Compound Produced by Endophytic Fungi Isolated From Pelargonium sidoides Against Selected Bacteria of Clinical Importance

  • Manganyi, Madira Coutlyne;Tchatchouang, Christ-Donald K.;Regnier, Thierry;Bezuidenhout, Cornelius Carlos;Ateba, Collins Njie
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.335-339
    • /
    • 2019
  • Endophytic fungi have the ability to live inside the host plant tissues without causing neither symptoms of diseases/or harm. Opportunistic infections are accountable for majority of the outbreaks, thereby putting a burden on the health system. To investigate and characterize the bioactive compounds for the control of bacteria of clinical importance, extracts from endophytic fungi were isolated from indigenous South African medicinal plants. Extracts from endophytic fungi were isolated from 133 fungal strains and screened against Gram positive and negative bacteria namely Bacillus cereus, Escherichia coli, Enterococcus faecium, and E. gallinarum using disk diffusion. Furthermore, gas chromatography-mass spectrometry was performed to identify the bioactive compounds. Sixteen out of one hundred and thirty-three (12%) fungi extracts exhibited antibacterial properties against some of the selected bacteria. E. coli was found to be the most susceptible in contrast to E. faecium and E. gallinarum which were the most resistant. The isolate MHE 68, identified as Alternaria sp. displayed the greater spectrum of antibacterial activities by controlling selected clinical bacteria strains including resistant E. faecium and E. gallinarum. The chemical analysis of the extract from MHE 68 indicated that linoleic acid (9,12-octadecadienoic acid (Z,Z)) and cyclodecasiloxane could be accountable for the antibacterial activity. This is the first study conducted on the secondary metabolites produced by endophytic fungal strains isolated from the Pelargonium sidoides DC. possessing antibacterial properties.

Acremonidin E produced by Penicillium sp. SNF123, a fungal endophyte of Panax ginseng, has antimelanogenic activities

  • Kim, Kyuri;Jeong, Hae-In;Yang, Inho;Nam, Sang-Jip;Lim, Kyung-Min
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.98-107
    • /
    • 2021
  • Background: Ginseng extracts and ginseng-fermented products are widely used as functional cosmetic ingredients for their whitening and antiwrinkle effects. Recently, increasing attention has been given to bioactive metabolites isolated from endophytic fungi. However, little is known about the bioactive metabolites of the fungi associated with Panax ginseng Meyer. Methods: An endophytic fungus, Penicillium sp. SNF123 was isolated from the root of P. ginseng, from which acremonidin E was purified. Acremonidin E was tested on melanin synthesis in the murine melanoma cell line B16F10, in the human melanoma cell line MNT-1, and in a pigmented 3D-human skin model, Melanoderm. Results: Acremonidin E reduced melanogenesis in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 cells with minimal cytotoxicity. qRT-PCR analysis demonstrated that acremonidin E downregulated melanogenic genes, including tyrosinase and tyrosinase-related protein 1 (TRP-1), while their enzymatic activities were unaffected. The antimelanogenic effects of acremonidin E were further confirmed in MNT-1 and a pigmented 3D human epidermal skin model, Melanoderm. Immunohistological examination of the Melanoderm further confirmed the regression of both melanin synthesis and melanocyte activation in the treated tissue. Conclusion: This study demonstrates that acremonidin E, a bioactive metabolite derived from a fungal endophyte of P. ginseng, can inhibit melanin synthesis by downregulating tyrosinase, illuminating the potential utility of microorganisms associated with P. ginseng for cosmetic ingredients.

Biological Control of Aphid Using Fungal Culture and Culture Filtrates of Beauveria bassiana

  • Kim, Jeong Jun;Jeong, Gayoung;Han, Ji Hee;Lee, Sangyeob
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.221-224
    • /
    • 2013
  • Aphids are one of the most destructive pests in crop production such as pepper, cucumber, and eggplants. The importance of entomopathogenic fungi as alternative pest control agents is increasing. Conidia of entomopathogenic fungi are influenced by environmental conditions, such as temperature and relative humidity, and cause slow and fluctuating mortality. These factors have prevented wider application and use of biocontrol agents. For investigation of means of mitigation of such problems, we conducted bioassays with 47 fungal culture filtrates in order to evaluate the potential of secondary metabolites produced by entomopathogenic fungi for use in aphid control. Among 47 culture filtrates cultured potato dextrose broth, filtrate of Beauveria bassiana Bb08 showed the highest mortality (78%) against green peach aphid three days after treatments. Filtrate of Bb08 cultured in Adamek's medium showed higher toxicity as 100% to third instar nymphs of the aphid compared with seven other filtrates cultured in different broths amended with colloidal chitin or oil. The culture filtrates and fungal cultures from media amended with colloidal chitin or oil had lower control efficacies than filtrates without these additives in three different media. These results indicate that the fungal culture fluid or culture filtrate of B. bassiana Bb08 cultured in Adamek's medium has potential for development as a mycopesticide for aphid control.

A Novel Approach for Assessing the Proteolytic Potential of Filamentous Fungi on the Example of Aspergillus spp.

  • Anna Shestakova;Alexander Osmolovskiy;Viktoria Lavrenova;Daria Surkova;Biljana Nikolic;Zeljko Savkovic
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.457-464
    • /
    • 2023
  • Proteolytic enzymes produced by filamentous fungi can degrade various fibrous and globular proteins along with other metabolites that may also find application in biotechnology. In this study, the effect of proteolytic enzymes of 22 Aspergillus strains on various proteins was investigated using protein-containing diagnostic media. Subsequently, a new parameter estimating secreted proteinases specificity towards fibrous or globular proteins without its advanced biochemical research - index of severity of proteolytic action (ISPA) - was suggested. This index determines mycozymes specificity in following manner: its value increases with greater affinity to fibrous proteins, decreases if there is higher affinity to globular proteins. ISPA value was the lowest (0.52) for Aspergillus domesticus, indicating the highest specificity to globular proteins, the highest one (1.26) for A. glaucus, whose proteinases best hydrolyzed fibrous proteins. However, the highest overall proteolytic potential was observed for Aspergillus melleus. The ability to produce acid, alkali and extracellular pigments was evaluated for all isolated strains as well.

Analysis of the Bioactive Metabolites of the Endangered Mexican Lost Fungi Campanophyllum - A Report from India

  • Borthakur, Madhusmita;Gurung, Arun Bahadur;Bhattacharjee, Atanu;Joshi, S.R.
    • Mycobiology
    • /
    • v.48 no.1
    • /
    • pp.58-69
    • /
    • 2020
  • Meghalaya, (in India), in the region of the mega-biodiversity hotspots, is home to a plethora of wild mushrooms. The present study concerns the exploration of the order Agaricales, which includes rare gilled mushrooms considered endangered under IUCN A4c criteria, due to the declining habitat. Electron microscopy of the gill sections revealed an abundance of clamp connections, hyphal cell walls, cystidia, and basidia. This rare species which belongs to the family Cyphellaceae, exhibits morphological and molecular differences from the Cyphella spp. Phylogenetic analysis revealed that it formed a clade under the genus Campanophyllum of the order Agaricales, confirmed by both Neighbor Joining (NJ) and Bayesian phylogenetic analysis. Being nutritionally potent along with its efficient antioxidant value, the fungal extract shows significant rise of two-fold in the antimicrobial activity along with the commercial antibiotics. The compound, Phenol, 2, 4-bis (1, 1-Dimethylethyl) (2, 4-DTBP) showed in ample range in the fungal extract along with aliphatic hydrocarbons, terpene, alcohol and volatile organic compounds on further characterization in GCMS. The present study indicates the endangered Campanophyllum proboscideum could be a rich source of natural antioxidants and an effective pharmaceutical agent.

Actinobacteria from Cow Feces: Isolation, Identification and Screening for Industrially Important Secondary Metabolites

  • Semwal, Preeti;Rawat, Vinay;Sharma, Pushpendra;Baunthiyal, Mamta
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.68-76
    • /
    • 2018
  • Actinobacterial strains isolated from Cow feces were studied for their antifungal attributes against phytopathogens and industrially important enzymes. A total of 30 Actinobacterial strains were obtained from 10 samples of cow feces. All the strains were belonging to the genera Streptomyces on the basis of morphological and chemotaxonomic analysis. During preliminary screening, out of 30 strains, 15 strains (50%) showed antifungal activity against five fungal phytopathogens including Aspergillus niger, Fusarium solani, Fusarium oxysporum, Macrophomina phaseolina and Rhizoctonia solani. While, isolate GBTCF-26 was found to be most active against R. solani with 62.2% inhibition of fungal mycelium, GBTCF-09 was prominent against F. solani and F. oxysporum with percent inhibition of 61.1% and 58.8%, respectively. Out of 30 strains, 19 (63.3%), 16 (53.3%), 11 (36.7%), 10 (33.3%), 4 (13.3%) and 8 (26.7%) strains were producing amylase, caseinase, gelatinase, lipase, chitinase and cellulose, respectively. The selected strains, GBTCF-09, GBTCF-21 and GBTCF-26, were identified as Streptomyces sp. on the basis of their 16S rDNA sequence. The study supports the idea that the Actinobacteria from unique niches (Cow feces) possess the production potential of industrially important enzymes including bioactive molecules.

Natural Anthraquinone Derivatives from a Marine Mangrove Plant-Derived Endophytic Fungus Eurotium rubrum: Structural Elucidation and DPPH Radical Scavenging Activity

  • Li, Dong-Lil;Li, Xiao-Ming;Wang, Bin-Gui
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.675-680
    • /
    • 2009
  • There is considerable interest in the isolation of potent radical scavenging compounds from natural resources to treat diseases involving oxidative stress. In this report, four new fungal metabolites including one new bisdihydroanthracenone derivative (1, eurorubrin), two new seco-anthraquinone derivatives [3, 2-O-methyl-9-dehydroxyeurotinone and 4, 2-O-methyl-4-O-(${\alpha}$-D-ribofuranosyl)-9-dehydroxyeurotinone], and one new anthraquinone glycoside [6,3-O-(${\alpha}$-D-ribofuranosyl)-questin], were isolated and identified from Eurotium rubrum, an endophytic fungal strain that was isolated from the inner tissue of the stem of the marine mangrove plant Hibiscus tiliaceus. In addition, three known compounds including asperflavin (2), 2-0-methyleurotinone (5), and questin (7) were also isolated and identified. Their structures were elucidated on the basis of spectroscopic analysis. All of the isolated compounds were evaluated for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.

High Throughput Screening of Antifungal Metabolites Against Colletotrichum gloeosporioides

  • Ahn, Il-Pyung;Kim, Soon-Ok;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • Colletotrichum gloeosporioides forms an appressorium, a specialized infection structure, to infect its hosts. Among 400 and 600 culture filtrates from fungi and class Actinomycetes, six methanol extracts (A5005, A5314, A5387, A5560, A5597, and A5598) from the class Actinomycetes significantly inhibited appressorium formation in C. gloeosporioides infecting pepper fruits in a dose-dependent manner, while conidial germination was slightly enhanced. Two (A5005 and A5560) of them also exhibited distinctive inhibitory effect on the disease progress of pepper anthracnose. Water fractions of both culture filtrates also specifically inhibited appressorium formation in C. gloeosporioides and pepper anthracnose disease. Inhibition of appressorium formation by culture filtrate of A5005 was partially restored by the exogenous calcium. This results suggests that chemicals within A5005 extents its biological activity through disturbance of intracellular $Ca^{2+}$ regulation during prepenetration morphogenesis by C. gloeosporioides. Together, cell-based and target-oriented screening system used in this study should be applicable for other plant pathogenic fungi prerequisite appressorium formation to infect their hosts.