DOI QR코드

DOI QR Code

Acremonidin E produced by Penicillium sp. SNF123, a fungal endophyte of Panax ginseng, has antimelanogenic activities

  • Kim, Kyuri (College of Pharmacy, Ewha Womans University) ;
  • Jeong, Hae-In (Department of Chemistry and Nanoscience, Global Top 5 Program, Ewha Womans University) ;
  • Yang, Inho (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Nam, Sang-Jip (Department of Chemistry and Nanoscience, Global Top 5 Program, Ewha Womans University) ;
  • Lim, Kyung-Min (College of Pharmacy, Ewha Womans University)
  • Received : 2019.08.16
  • Accepted : 2019.11.15
  • Published : 2021.01.15

Abstract

Background: Ginseng extracts and ginseng-fermented products are widely used as functional cosmetic ingredients for their whitening and antiwrinkle effects. Recently, increasing attention has been given to bioactive metabolites isolated from endophytic fungi. However, little is known about the bioactive metabolites of the fungi associated with Panax ginseng Meyer. Methods: An endophytic fungus, Penicillium sp. SNF123 was isolated from the root of P. ginseng, from which acremonidin E was purified. Acremonidin E was tested on melanin synthesis in the murine melanoma cell line B16F10, in the human melanoma cell line MNT-1, and in a pigmented 3D-human skin model, Melanoderm. Results: Acremonidin E reduced melanogenesis in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 cells with minimal cytotoxicity. qRT-PCR analysis demonstrated that acremonidin E downregulated melanogenic genes, including tyrosinase and tyrosinase-related protein 1 (TRP-1), while their enzymatic activities were unaffected. The antimelanogenic effects of acremonidin E were further confirmed in MNT-1 and a pigmented 3D human epidermal skin model, Melanoderm. Immunohistological examination of the Melanoderm further confirmed the regression of both melanin synthesis and melanocyte activation in the treated tissue. Conclusion: This study demonstrates that acremonidin E, a bioactive metabolite derived from a fungal endophyte of P. ginseng, can inhibit melanin synthesis by downregulating tyrosinase, illuminating the potential utility of microorganisms associated with P. ginseng for cosmetic ingredients.

Keywords

References

  1. Ahuja A, Kim JH, Kim J-H, Yi Y-S, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2018;42(3):248-54. https://doi.org/10.1016/j.jgr.2017.04.009
  2. Attele AS, Wu JA, Yuan C-S. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58(11):1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  3. Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitroda growing case for three-dimensional (3D) culture systems. In: Seminars in cancer biology, vol. 5. Elsevier; 2005. p. 405-12.
  4. Blessing K, Sanders D, Grant J. Comparison of immunohistochemical staining of the novel antibody melan-A with S100 protein and HMB-45 in malignant melanoma and melanoma variants. Histopathology 1998;32(2):139-46. https://doi.org/10.1046/j.1365-2559.1998.00312.x
  5. Brohem CA, da Silva Cardeal LB, Tiago M, Soengas MS, de Moraes Barros SB, Maria-Engler SS. Artificial skin in perspective: concepts and applications. Pigment Cell & Melanoma Res 2011;24(1):35-50 (1):35-50. https://doi.org/10.1111/j.1755-148X.2010.00786.x
  6. Burger P, Landreau A, Azoulay S, Michel T, Fernandez X. Skin whitening cosmetics: feedback and challenges in the development of natural skin lighteners. Cosmetics 2016;3(4):36. https://doi.org/10.3390/cosmetics3040036
  7. Chatatikun M, Yamauchi T, Yamasaki K, Aiba S, Chiabchalard A. Anti melanogenic effect of Croton roxburghii and Croton sublyratus leaves in α-MSH stimulated B16F10 cells. J Tradit Complement Med 2019;9(1):66-72. https://doi.org/10.1016/j.jtcme.2017.12.002
  8. Draelos Z. Skin lightning preparations and the hydroquinone controversy. Dermatol Ther 2007;20(5):308-13. https://doi.org/10.1111/j.1529-8019.2007.00144.x
  9. Dureja H, Kaushik D, Gupta M, Kumar V, Lather V. Cosmeceuticals: an emerging concept. J Pharmacol 2005;37(3):155.
  10. Fujimoto N, Onodera H, Mitsumori K, Tamura T, Maruyama S, Ito A. Changes in thyroid function during development of thyroid hyperplasia induced by kojic acid in F344 rats. Carcinogenesis 1999;20(8):1567-72. https://doi.org/10.1093/carcin/20.8.1567
  11. Ganguly B, Kumar N, Ahmad AH, Rastogi SK. Influence of phytochemical composition on in vitro antioxidant and reducing activities of Indian ginseng [Withania somnifera (L.) Dunal] root extracts. J Ginseng Res 2018;42(4):463-9. https://doi.org/10.1016/j.jgr.2017.05.002
  12. Griffith LG, Naughton G. Tissue engineeringecurrent challenges and expanding opportunities. Science 2002;295(5557):1009-14. https://doi.org/10.1126/science.1069210
  13. Han J, Lee E, Kim E, Yeom MH, Kwon O, Yoon TH, Lee TR, Kim K. Role of epidermal gd T-cell-derived interleukin 13 in the skin-whitening effect of Ginsenoside F1. Exp Dermatol 2014;23(11):860-2. https://doi.org/10.1111/exd.12531
  14. He H, Bigelis R, Solum EH, Greenstein M, Carter GT. Acremonidins, new polyketide-derived antibiotics produced by Acremonium sp., LL-Cyan 416. J Antibio 2003;56(11):923-30. https://doi.org/10.7164/antibiotics.56.923
  15. Heinig U, Scholz S, Jennewein SJFd. Getting to the bottom of taxol biosynthesis by fungi. Fungal Divers 2013;60(1):161-70. https://doi.org/10.1007/s13225-013-0228-7
  16. Hu Z-M, Zhou Q, Lei T-C, Ding S-F, Xu S-Z. Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: biosafety as skin whitening agents. J Dermatol Sci 2009;55(3):179-84. https://doi.org/10.1016/j.jdermsci.2009.06.003
  17. Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: protective effects of Korean Red Ginseng against viral infection. J Ginseng Res 2016;40(4):309-14. https://doi.org/10.1016/j.jgr.2015.09.002
  18. Jeong Y-M, Oh WK, Tran TL, Kim W-K, Sung SH, Bae K, Lee S, Sung J-H. Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: possible involvement of the protein kinase A pathway. Biosci Biotechnol Biochem 2013:120602.
  19. Jones K, Hughes J, Hong M, Jia Q, Orndorff S. Modulation of melanogenesis by aloesin: a competitive inhibitor of tyrosinase. Pigment Cell Res 2002;15(5):335-40. https://doi.org/10.1034/j.1600-0749.2002.02014.x
  20. Jung K-M, Lee S-H, Jang W-H, Jung H-S, Heo Y, Park Y-H, Bae S, Lim K-M, Seok SH. KeraSkin-VM: a novel reconstructed human epidermis model for skin irritation tests. Toxicol in Vitro 2014;28(5):742-50. https://doi.org/10.1016/j.tiv.2014.02.014
  21. Kim H-J, Jung S-W, Kim S-Y, Cho I-H, Kim H-C, Rhim H, Kim M, Nah S-Y. Panax ginseng as an adjuvant treatment for Alzheimer's disease. J Ginseng Res 2018;42(4):401-11. https://doi.org/10.1016/j.jgr.2017.12.008
  22. Kim J-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42(3):264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  23. Kim M, Lee C-S, Lim K-M. Rhododenol activates melanocytes and induces morphological alteration at sub-cytotoxic levels. Int J Mol Sci 2019;20(22):5665. https://doi.org/10.3390/ijms20225665
  24. Kim SE, Lee CM, Kim YC. Anti-melanogenic effect of oenothera laciniata methanol extract in melan-a cells. Toxicol Res 2017;33(1):55-62. https://doi.org/10.5487/TR.2017.33.1.055.
  25. Kim Y-M, Cho S-E, Seo Y-K. The activation of melanogenesis by p-CREB and MITF signaling with extremely low-frequency electromagnetic fields on B16F10 melanoma. Life Sci 2016;162:25-32. https://doi.org/10.1016/j.lfs.2016.08.015
  26. Lee C-S, Nam G, Bae I-H, Park J. Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytese-keratinocytes and three-dimensional human skin equivalent. J Ginseng Res 2019;43(2):300. https://doi.org/10.1016/j.jgr.2017.12.005
  27. Lee H-S, Kim M-R, Park Y, Park HJ, Chang UJ, Kim SY, Suh HJ. Fermenting red ginseng enhances its safety and efficacy as a novel skin care anti-aging ingredient: in vitro and animal study. J Med Food 2012;15(11):1015-23. https://doi.org/10.1089/jmf.2012.2187
  28. Lee J-O, Kim E, Kim JH, Hong YH, Kim HG, Jeong D, Kim J, Kim SH, Park C, Seo DB. Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract. J Ginseng Res 2018;42(3):389-99. https://doi.org/10.1016/j.jgr.2018.02.007
  29. Lee Y-S, Kim H-K, Lee K-J, Jeon H-W, Cui S, Lee Y-M, Moon B-J, Kim Y-H, Lee Y-S. Inhibitory effect of glyceollin isolated from soybean against melanogenesis in B16 melanoma cells. BMB Rep 2010;43(7):461-7. https://doi.org/10.5483/BMBRep.2010.43.7.461
  30. Lee Y, Kim K-T, Kim SS, Hur J, Ha SK, Cho C-W, Choi SY. Inhibitory effects of ginseng seed on melanin biosynthesis. Pharmacogn Mag 2014;10(Suppl 2): S272.
  31. Levitt J. The safety of hydroquinone: a dermatologist's response to the 2006 Federal Register. J Am Acad Dermatol 2007;57(5):854-72. https://doi.org/10.1016/j.jaad.2007.02.020
  32. Li Z, Ji GE. Ginseng and obesity. J Ginseng Res 2018;42(1):1-8. https://doi.org/10.1016/j.jgr.2016.12.005
  33. McMullen R, Bauza E, Gondran C, Oberto G, Domloge N, Farra CD, Moore DJ. Image analysis to quantify histological and immunofluorescent staining of ex vivo skin and skin cell cultures. Int J Cosmet Sci 2010;32(2):143-54. https://doi.org/10.1111/j.1468-2494.2010.00541.x
  34. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, SA Bandh. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 2015;82:50-9. https://doi.org/10.1016/j.micpath.2015.04.001
  35. Nordlund J, Grimes P, Ortonne JP. The safety of hydroquinone. J Eur Acad Dermatol Venereol 2006;20(7):781-7. https://doi.org/10.1111/j.1468-3083.2006.01670.x
  36. Park Y-H, Kim Y, Mishra RC, Bae H. Fungal endophytes inhabiting mountain-cultivated ginseng (Panax ginseng Meyer): diversity and biocontrol activity against ginseng pathogens. Sci Rep 2017;7(1):16221. https://doi.org/10.1038/s41598-017-16181-z
  37. Park Y-H, Lee S-G, Ahn DJ, Kwon TR, Park SU, Lim H-S, Bae H. Diversity of fungal endophytes in various tissues of Panax ginseng Meyer cultivated in Korea. J Ginseng Res 2012;36(2):211. https://doi.org/10.5142/jgr.2012.36.2.211
  38. Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 2017;32(1):403-25. https://doi.org/10.1080/14756366.2016.1256882
  39. Song M, Mun J-H, Ko H-C, Kim B-S, Kim M-B. Korean Red Ginseng powder in the treatment of melasma: an uncontrolled observational study. J Ginseng Res 2011;35(2):170. https://doi.org/10.5142/jgr.2011.35.2.170
  40. Song X, Wu H, Yin Z, Lian M, Yin C. Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 2017;22(6):837. https://doi.org/10.3390/molecules22060837
  41. Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN. Endophytic fungi-alternative sources of cytotoxic compounds: a review. Front Pharmacol 2018;9:309. https://doi.org/10.3389/fphar.2018.00309
  42. Wang L, Lu A-P, Yu Z-L, Wong RN, Bian Z-X, Kwok H-H, Yue PY-K, Zhou L-M, Chen H, Xu M. The melanogenesis-inhibitory effect and the percutaneous formulation of ginsenoside Rb1. PharmSciTech 2014;15(5):1252-62.
  43. Wang R-F, Li J, Hu H-J, Li J, Yang Y-B, Yang L, Wang Z-T. Chemical transformation and target preparation of saponins in stems and leaves of Panax notoginseng. J Ginseng Res 2018;42(3):270-6. https://doi.org/10.1016/j.jgr.2016.08.009
  44. Xie J, Wu Y-Y, Zhang T-Y, Zhang M-Y, Zhu W-W, Gullen EA, Wang Z-J, Cheng Y-C, Zhang Y-X. New and bioactive natural products from an endophyte of Panax notoginseng. Rsc Advances 2017;7(60):38100-9. https://doi.org/10.1039/C7RA07060H
  45. Xiong Z-Q, Yang Y-Y, Zhao N, Wang YJBm. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microb 2013;13(1):71. https://doi.org/10.1186/1471-2180-13-71
  46. Xu Y, Wang C, Liu H, Zhu G, Fu P, Wang L, Zhu W. Meroterpenoids and isocoumarinoids from a myrothecium fungus associated with apocynum venetum. Mar Drugs 2018;16(10):363. https://doi.org/10.3390/md16100363
  47. Yoon T-J, Lei TC, Yamaguchi Y, Batzer J, Wolber R, Hearing VJ. Reconstituted 3-dimensional human skin of various ethnic origins as an in vitro model for studies of pigmentation. Anal Biochem 2003;318(2):260-9. https://doi.org/10.1016/S0003-2697(03)00172-6
  48. Yuan J, Jian-Nan B, Bing Y, Xu-Dong Z. Taxol-producing fungi: a new approach to industrial production of taxol. Chin J Biotechnol 2006;22(1):1-6. https://doi.org/10.1016/S1872-2075(06)60001-0
  49. Zheng Y-K, Miao C-P, Chen H-H, Huang F-F, Xia Y-M, Chen Y-W, Zhao L-X. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 2017;41(3):353-60. https://doi.org/10.1016/j.jgr.2016.07.005
  50. Zhou H, Kepa JK, Siegel D, Miura S, Hiraki Y, Ross D. Benzene metabolite hydroquinone up-regulates chondromodulin-I and inhibits tube formation in human bone marrow endothelial cells. Mol Pharmacol 2009;76(3):579-87. https://doi.org/10.1124/mol.109.057323
  51. Zhou X, Zhu H, Liu L, Lin J, Tang K. A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 2010;86(6):1707-17. https://doi.org/10.1007/s00253-010-2546-y

Cited by

  1. Saccharobisindole, Neoasterric Methyl Ester, and 7-Chloro-4(1H)-quinolone: Three New Compounds Isolated from the Marine Bacterium Saccharomonospora sp. vol.20, pp.1, 2021, https://doi.org/10.3390/md20010035