• Title/Summary/Keyword: Fungal endophyte

Search Result 37, Processing Time 0.03 seconds

Culturable Endophytes Associated with Soybean Seeds and Their Potential for Suppressing Seed-Borne Pathogens

  • Kim, Jiwon;Roy, Mehwish;Ahn, Sung-Ho;Shanmugam, Gnanendra;Yang, Ji Sun;Jung, Ho Won;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.313-322
    • /
    • 2022
  • Seed-borne pathogens in crops reduce the seed germination rate and hamper seedling growth, leading to significant yield loss. Due to the growing concerns about environmental damage and the development of resistance to agrochemicals among pathogen populations, there is a strong demand for eco-friendly alternatives to synthetic chemicals in agriculture. It has been well established during the last few decades that plant seeds harbor diverse microbes, some of which are vertically transmitted and important for plant health and productivity. In this study, we isolated culturable endophytic bacteria and fungi from soybean seeds and evaluated their antagonistic activities against common bacterial and fungal seed-borne pathogens of soybean. A total of 87 bacterial isolates and 66 fungal isolates were obtained. Sequencing of 16S rDNA and internal transcribed spacer amplicon showed that these isolates correspond to 30 and 15 different species of bacteria and fungi, respectively. Our antibacterial and antifungal activity assay showed that four fungal species and nine bacterial species have the potential to suppress the growth of at least one seed-borne pathogen tested in the study. Among them, Pseudomonas koreensis appears to have strong antagonistic activities across all the pathogens. Our collection of soybean seed endophytes would be a valuable resource not only for studying biology and ecology of seed endophytes but also for practical deployment of seed endophytes toward crop protection.

Endophytes from Natural Festuca spp. in Southwest China and Their Compatibility with Tall Fescue Cultivars (남서중국의 자생페스큐의 엔도파이트와 톨체스큐 품종과의 공생)

  • Wang, Yaoyao;Du, Yongji;Han, Liebao;Li, Deying
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.163-176
    • /
    • 2009
  • Investigating endophyte distribution, naturally occurring in native grasses, is important for understanding endophyte-grass associations and using the beneficial effects of endophytes in cultivated plants. The goal of this study was to investigate endophytes from natural Festuca spp. in Yunnan, Guizhou, and Sichuan Provinces of China, and to study the compatibility between the endophytes and turf type tall fescue (Festuca arundinacea) which is widely used for lawn and athletic fields in that region. Of 628 accessions in F. ovina, 421 had endophytes identified in leaf sheath from on-site microscopic examination. From Festuca spp, three isolates were obtained from the seeds and ninety isolates were obtained from seedlings established from the collected seeds. The isolates from F. ovina and F. stapfii were tentatively identified as Neotyphodium typhinum and Neotyphodiumstarii, respectively. We tested compatibility of the two fungal species with seven tall fescue cultivars, Little Hero, Sub Boy, Eldorado, Arid III, Millennium, Crossfire, and Fawn. N. typhinum or N. starii did not infect 'Fawn' with either seed injection or seed soaking method. The highest infection rate byboth N. typhinum and N. starii was in 'Sun Boy' and 'Eldorado'. There were significant interaction effects between tall fescue cultivar and type of endophyte on infection.

Entomopathogenic Fungi-mediated Pest Management and R&D Strategy (곤충병원성 진균을 활용한 해충 관리와 개발 전략)

  • Lee, Se Jin;Shin, Tae Young;Kim, Jong-Cheol;Kim, Jae Su
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.197-210
    • /
    • 2022
  • Entomopathogenic fungi can be used to control a variety of sucking and chewing insects, with little effect on beneficial insects and natural enemies. Approximately 170 entomopathogenic fungal insecticides have been registered and used worldwide, with the recent focus being on the mode of action and mechanism of insect-fungal interactions. During the initial period of research and development, the industrialization of entomopathogenic fungi focused on the selection of strains with high virulence. However, improvement in productivity, including securing resistance to environmental stressors, is a major issue that needs to be solved. Although conidia are the primary application propagules, efforts are being made to overcome the limitations of blastospores to improve the economic feasibility of the production procedure. Fungal transformation is also being conducted to enhance insecticidal activity, and molecular biology is being used to investigate functions of various genes. In the fungi-based pest management market, global companies are setting up cooperative platforms with specialized biological companies in the form of M&As or partnerships with the aim of implementing a tank-mix strategy by combining chemical pesticides and entomopathogenic fungi. In this regard, understanding insect ecology in the field helps in providing more effective fungal applications in pest management, which can be used complementary to chemicals. In the future, when fungal applications are combined with digital farming technology, above-ground applications to control leaf-dwelling pests will be more effective. Therefore, for practical industrialization, it is necessary to secure clear research data on intellectual property rights.

A Bacterial Endophyte, Pseudomonas brassicacearum YC5480, Isolated from the Root of Artemisia sp. Producing Antifungal and Phytotoxic Compounds

  • Chung, Bok-Sil;Aslam, Zubair;Kim, Seon-Won;Kim, Geun-Gon;Kang, Hye-Sook;Ahn, Jong-Woong;Chung, Young-Ryun
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.461-468
    • /
    • 2008
  • An endophytic bacterial strain YC5480 producing antifungal and phytotoxic compounds simultaneously was isolated from the surface sterilized root of Artemisia sp. collected at Jinju area, Korea. The bacterial strain was identified as a species of Pseudomonas brassicacearum based on its 16S rRNA gene sequence analysis and physiological and biochemical characteristics. The seed germination and growth of monocot and dicot plants were inhibited by culture filtrate (1/10-strength Tryptic Soy Broth) of the strain. The germination rate of radish seeds in the culture filtrate differed in various culture media. Only 20% of radish seeds germinated in the culture media of 1/2 TSB for 5 days incubation. Mycelial growth of fungal pathogens, Colletotrichum gloeosporioides, Fusarium oxysporum and Phytophthora capsici was also inhibited by the culture filtrate of the strain YC5480. An antifungal compound, KS-1 with slight inhibitory activity of radish seed germination at 1,000 ppm and a seed germination inhibitory compound, KS-2 without suppression of fungal growth were produced simultaneously in TSB. The compounds KS-1 and KS-2 were identified to be 2,4-diacetylphloroglucinol (DAPG) and 2,4,6-trihydroxyacetophenone (THA), respectively.

Endophytic Diaporthe sp. ED2 Produces a Novel Anti-Candidal Ketone Derivative

  • Yenn, Tong Woei;Ring, Leong Chean;Nee, Tan Wen;Khairuddean, Melati;Zakaria, Latiffah;Ibrahim, Darah
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1065-1070
    • /
    • 2017
  • This study aimed to examine the anti-candidal efficacy of a novel ketone derivative isolated from Diaporthe sp. ED2, an endophytic fungus residing in medicinal herb Orthosiphon stamieus Benth. The ethyl acetate extract of the fungal culture was separated by open column and reverse phase high-performance liquid chromatography (HPLC). The eluent at retention time 5.64 min in the HPLC system was the only compound that exhibited anti-candidal activity on Kirby-Bauer assay. The structure of the compound was also elucidated by nuclear magnetic resonance and spectroscopy techniques. The purified anti-candidal compound was obtained as a colorless solid and characterized as 3-hydroxy-5-methoxyhex-5-ene-2,4-dione. On broth microdilution assay, the compound also exhibited fungicidal activity on a clinical strain of Candida albicans at a minimal inhibitory concentration of $3.1{\mu}g/ml$. The killing kinetic analysis also revealed that the compound was fungicidal against C. albicans in a concentration- and time-dependent manner. The compound was heat-stable up to $70^{\circ}C$, but its anti-candidal activity was affected at pH 2.

Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane

  • Hilton, Angelyn;Zhang, Huanming;Yu, Wenying;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.238-248
    • /
    • 2017
  • Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-$1{\alpha}$ gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.

Biological Characterization of Periconicins, Bioactive Secondary Metabolites, Produced by Periconia sp. OBW-15

  • SHIN, DONG-SUN;OH, MI-NA;YANG, HYEONG-CHEOL;OH, KI-BONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.216-220
    • /
    • 2005
  • Periconicin A and B, two new fusicoccane diterpenes originally isolated from the cultures of endophytic fungus Periconia sp. OBW-15, were tested by several biological assays. Periconicin A was consistently more active than periconicin B. In an antifungal activity assay, periconicin A showed potent inhibitory activity against the agents of human mycoses, including Candida albicans, Trichophyton mentagrophytes, and T. rubrum, with minimum inhibitory concentration (MIC) in the range of 3.12- 6.25 $\mug$ /ml. In a plant growth regulatory activity assay, periconicins inhibited hypocotyl elongation and root growth of Brassica campestris L. and Raphanus sativus L. At concentrations below 1 μg/ml, however, both compounds accelerated root growth by 110- 135%. From these results, it is apparent that a methyl group positioned in a cyclopentane ring may play an important role in plant and fungal growth inhibitory activity.

Effect of Acaromyces Ingoldii Secondary Metabolites on the Growth of Brown-Rot (Gloeophyllum Trabeum) and White-Rot (Trametes Versicolor) Fungi

  • Olatinwo, Rabiu;So, Chi-Leung;Eberhardt, Thomas L.
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.506-511
    • /
    • 2019
  • We investigated the antifungal activities of an endophytic fungus identified as Acaromyces ingoldii, found on a loblolly (Pinus taeda L.) pine bolt in Louisiana during routine laboratory microbial isolations. The specific objectives were to determine the inhibitory properties of A. ingoldii secondary metabolites (crude extract) on the mycelial growth of a brown-rot fungus Gloeophyllum trabeum and a white-rot fungus Trametes versicolor, and to determine the effective concentration of A. ingoldii crude preparation against the two decay fungi in vitro. Results show the crude preparation of A. ingoldii from liquid culture possesses significant mycelial growth inhibitory properties that are concentration dependent against the brownrot and white-rot fungi evaluated. An increase in the concentration of A. ingoldii secondary metabolites significantly decreased the mycelial growth of both wood decay fungi. G. trabeum was more sensitive to the inhibitory effect of the secondary metabolites than T. versicolor. Identification of specific A. ingoldii secondary metabolites, and analysis of their efficacy/specificity warrants further study. Findings from this work may provide the first indication of useful roles for Acaromyces species in a forest environment, and perhaps a future potential in the development of biocontrol-based wood preservation systems.

Molecular Identification of Endophytic Fungi Isolated from Needle Leaves of Pinus thunbergii (곰솔(Pinus thunbergii)의 침엽에서 분리한 내생균의 분자적 동정)

  • Kim, Chang-Kyun;Eo, Ju-Kyeong;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.183-186
    • /
    • 2012
  • Endophytic fungi were isolated from needle leaves of Pinus thunbergii distributed in Boryeong of Korea. Total 7 species of fungi were identified using partial sequences of ITS and LSU regions of nuclear DNA Anthostomella sepelibilis, Beltrania sp., Cladosporium sp., Coniochaeta velutina, Entonaema pallida, Lophodermium sp. and Nigrospora sphaerica sphaerica. The endophytic fungi, Beltrania sp. was the most dominant species isolated from P. thunbergii in this study. Results indicate that the distribution of endophytic fungi in the leaves of P. thunbergii could be influenced by environments of the fungal habitat.

Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens

  • Park, Young-Hwan;Mishra, Ratnesh Chandra;Yoon, Sunkyung;Kim, Hoki;Park, Changho;Seo, Sang-Tae;Bae, Hanhong
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.408-420
    • /
    • 2019
  • Background: Ginseng (Panax ginseng Meyer) is an invaluable medicinal plant containing various bioactive metabolites (e.g., ginsenosides). Owing to its long cultivation period, ginseng is vulnerable to various biotic constraints. Biological control using endophytes is an important alternative to chemical control. Methods: In this study, endophytic Trichoderma citrinoviride PG87, isolated from mountain-cultivated ginseng, was evaluated for biocontrol activity against six major ginseng pathogens. T. citrinoviride exhibited antagonistic activity with mycoparasitism against all ginseng pathogens, with high endo-1,4-${\beta}$-D-glucanase activity. Results: T. citrinoviride inoculation significantly reduced the disease symptoms caused by Botrytis cinerea and Cylindrocarpon destructans and induced ginsenoside biosynthesis in ginseng plants. T. citrinoviride was formulated as dustable powder and granules. The formulated agents also exhibited significant biocontrol activity and induced ginsenosides production in the controlled environment and mountain area. Conclusion: Our results revealed that T. citrinoviride has great potential as a biological control agent and elicitor of ginsenoside production.