• Title/Summary/Keyword: Fully coupled finite element model

검색결과 48건 처리시간 0.025초

3차원 파워흐름유한요소법을 이용한 인접한 두 실내에서의 진동음향 해석 (Vibro-acoustic Analysis of Adjoined Two Rooms Using 3-D Power Flow Finite Element Method)

  • 김성희;홍석윤;길현권;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.74-82
    • /
    • 2010
  • Power flow analysis(PFA) methods have shown many advantages in noise predictions and vibration analysis in medium-to-high frequency ranges. Applying the finite element technique to PFA has produced power flow finite element method(PFFEM) that can be effectively used for analysis of vibration of complicated structures. PFADS(power flow analysis design system) based on PFFEM as the vibration analysis program has been developed for vibration predictions and analysis of coupled structural systems. In this paper, to improve the function of vibro-acoustic coupled analysis in PFADS, the PFFEM has been extended for analysis of the interior noise problems in the vibro-acoustic fully coupled systems. The vibro-acoustic fully coupled PFFEM formulation based on energy coupled relations is extended to structural system model by using appropriate modifications to structural-structural, structural-acoustic and acoustic-acoustic joint matrices. It has been applied to prediction of the interior noise in two room model coupled with panels, and the PFFEM results are compared to those of statistical energy analysis(SEA).

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

  • Kim, Jung-Hyun;Kim, Yonghwan;Korobkin, Alexander
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1064-1081
    • /
    • 2014
  • This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM), which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU) containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제3권1호
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

A fully coupled thermo-poroelastoplasticity analysis of wellbore stability

  • Zhu, Xiaohua;Liu, Weiji;Zheng, Hualin
    • Geomechanics and Engineering
    • /
    • 제10권4호
    • /
    • pp.437-454
    • /
    • 2016
  • Wellbore instability problem is one of the main problems that met frequently during drilling, particularly in high temperature, high pressure (HPHT) formations. There are large amount of researches about wellbore stability in HPHT formations, which based on the thermo-poroelastic theory and some achievements were obtained; however, few studies have investigated on the fully coupled thermo-poroelastoplasticity analysis of wellbore stability, especially the analysis of wellbore stability while the filter cake formed. Therefore, it is very necessary to do some work. In this paper, the three-dimensional wellbore stability model which overall considering the effects of fully coupled thermo-poroelastoplasticity and filter cake is established based on the finite element method and Drucker-Prager failure criterion. The distribution of pore pressure, wellbore stress and plastic deformation under the conditions of different mud pressures, times and temperatures have been discussed. The results obtained in this paper can offer a great help on understanding the distribution of pore pressure and wellbore stress of wellbore in the HPHT formation for drilling engineers.

정압 스러스트 베어링의 유체-구조물 사이의 상호작용에 관한 연구 (A Study on Fluid-Structure Interaction of a Hydrostatic Thrust Bearing)

  • 김병탁
    • 한국기계가공학회지
    • /
    • 제5권3호
    • /
    • pp.92-98
    • /
    • 2006
  • In this study, the behavior characteristics of a hydrostatic thrust bearing used in hydraulic equipment was analyzed using a commercial finite element program, ADINA. The solid domain was modeled with the fluid domain simultaneously to solve the fully coupled problem, because this is a problem where a fully coupled analysis is needed in order to model the fluid-structure interaction(FSI). The results such as bearing deformation, stress, film thickness and lifting bearing force were obtained through FSI analysis, and then they were compared with the results calculated from the classical method, a single step sequential analysis. It was found that the result difference between two analyses was increased according to the injection pressure. Therefore, in case of high pressure loading, it is desirable to conduct the FSI analysis to examine the deformation characteristics of a hydrostatic slipper bearing.

  • PDF

전산 열.구조해석에 의한 알루미늄 6061 마찰교반용접 특성 연구 (A Study on Numerical Thermo-Mechanical Analysis for Aluminum 6061 Friction Stir Welding)

  • 박찬우;팽진기;옥주선
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.632-639
    • /
    • 2012
  • A fully coupled thermo-mechanical model is adopted to study the temperature distribution and the material deformation in friction stir welding(FSW) process. Rotational speed is most important parameters in this research. Three dimension results under different process parameters were presented. Result indicate that the maximum temperature is lower than the melting point of the welding material. The higher temperature gradient occurs in the leading side of the workpiece. The maximum temperature can be increased with increasing the tool angular velocity, rpm in the current numerical modeling. In this research ABAQUS Ver.6.7 is to analyze a fully coupled thermo-mechanical model. ALE(Arbitrary Lagrangian-Eulerian) finite element formulation is used for the large deformation in FSW process and using the Mass scaling for the analysis time efficiency.

열간단조공정중 강의 재결정거동 유한요소해석 (Prediction of Recrystallization Behaviors in Hot Forging by the Finite Element Method)

  • 곽우진;이경종;권오준;황상무
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.305-319
    • /
    • 1996
  • In this paper a finite element based system is presented for the prediction of the distributions of the recrystallized grain sizes in the workpiece in hot forging. The system adopts a fully coupled finite element thermo-mechanical model for predicting plastic deformation and heat transfer occurring in the workpiece and employs existing metallurgical models relating the recrystalliza-tion behavior with the thermo-mechanical variables such as temperatures strain and strain rate. The system is applied to upsetting of cylindrical preform. The predicted grain sizes are compared with the measurements. It is further applied to forging of a complex-shaped product.

  • PDF

내부 및 외부 유체와 연성된 파이프의 진동 해석 (Vibration of Pipes Coupled with Internal and External Fluids)

  • 유정수
    • 한국음향학회지
    • /
    • 제31권3호
    • /
    • pp.142-150
    • /
    • 2012
  • 도파관유한요소법 (waveguide finite element method, WFEM)은 단면의 형상이 길이방향으로 일정한 도파관 구조물의 진동을 해석하기 위한 수치해석 기법이다. 도파관유한요소법은 2차원 단면만을 FE 모델링하여 길이방향 파동 전파를 해석하므로 기존의 유한요소법에 비해 해석 모델의 크기가 작고 연산 시간이 짧다는 장점을 가진다. 본 연구에서는 기존의 도파관유한요소법을 확장하여 내부 및 외부에 유체가 채워진 도파관 구조물에 대한 진동 해석을 수행하였다. 이를 위해 내부 유체와 도파관 구조물은 WFE로, 외부 유체는 파수경계요소 (waveguide boudnary element, WBE)로 모델링하고 이들을 연성시킨 운동방정식을 제시하였다. 이 방법의 적용 예로써 내부에 물이 채워진 몰수된 파이프의 진동 및 방사 음향 파워를 해석하였다. 내부 및 외부 유체의 유/무에 따른 분산 선도와 가진점 모빌리티 (point mobility)를 구하고 유체 연성의 효과를 살펴보았다.

Transient heat transfer of unidirectional (1D) and multidirectional (2D/3D) functionally graded panels

  • Samarjeet Kumar;Vishesh Ranjan Kar
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.587-602
    • /
    • 2023
  • This article presents the numerical modelling of transient heat transfer in highly heterogeneous composite materials where the thermal conductivity, specific heat and density are assumed to be directional-dependent. This article uses a coupled finite element-finite difference scheme to perform the transient heat transfer analysis of unidirectional (1D) and multidirectional (2D/3D) functionally graded composite panels. Here, 1D/2D/3D functionally graded structures are subjected to nonuniform heat source and inhomogeneous boundary conditions. Here, the multidirectional functionally graded materials are modelled by varying material properties in individual or in-combination of spatial directions. Here, fully spatial-dependent material properties are evaluated using Voigt's micromechanics scheme via multivariable power-law functions. The weak form is obtained through the Galerkin method and solved further via the element-space and time-step discretisation through the 2D-isoparametric finite element and the implicit backward finite difference schemes, respectively. The present model is verified by comparing it with the previously reported results and the commercially available finite element tool. The numerous illustrations confirm the significance of boundary conditions and material heterogeneity on the transient temperature responses of 1D/2D/3D functionally graded panels.