• Title/Summary/Keyword: Full-scale laboratory test

Search Result 124, Processing Time 0.024 seconds

Testbed of Power MOSFET Aging Including the Measurement of On-State Resistance (전력용 MOSFET의 온-상태 저항 측정 및 노화 시험 환경 구축)

  • Shin, Joonho;Shin, Jong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.206-213
    • /
    • 2022
  • This paper presents setting up a laboratory-scale testbed to estimate the aging of power MOSFET devices and integrated power modules by measuring its on-state voltage and current. Based on the aging mechanisms of the component inside the power module (e.g., bond-wire, solder layer, and semiconductor chip), a system to measure the on-state resistance of device-under-test (DUT) is designed and experimented: a full-bridge circuit applies current stress to DUT, and a temperature chamber controls the ambient temperature of DUT during the aging test. The on-state resistance of SiC MOSFET measured by the proposed testbed was increased by 2.5%-3% after 44-hour of the aging test.

Design and behaviour of double skin composite beams with novel enhanced C-channels

  • Yan, Jia-Bao;Guan, Huining;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.517-532
    • /
    • 2020
  • This paper firstly developed a new type of Double Skin Composite (DSC) beams using novel enhanced C-channels (ECs). The shear behaviour of novel ECs was firstly studied through two push-out tests. Eleven full-scale DSC beams with ECs (DSCB-ECs) were tested under four-point loading to study their ultimate strength behaviours, and the studied parameters were thickness of steel faceplate, spacing of ECs, shear span, and strength of concrete core. Test results showed that all the DSCB-ECs failed in flexure-governed mode, which confirmed the effective bonding of ECs. The working mechanisms of DSCB-ECs with different parameters were reported, analysed and discussed. The load-deflection (or strain) behaviour of DSCB-ECs were also detailed reported. The effects of studied parameters on ultimate strength behaviour of DSCB-ECs have been discussed and analysed. Including the experimental studies, this paper also developed theoretical models to predict the initial stiffness, elastic stiffness, cracking, yielding, and ultimate loads of DSCB-ECs. Validations of predictions against 11 test results proved the reasonable estimations of the developed theoretical models on those stiffness and strength indexes. Finally, conclusions were given based on these tests and analysis.

Behaviors of novel sandwich composite beams with normal weight concrete

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.599-615
    • /
    • 2021
  • The ultimate strength behaviour of sandwich composite beams with J-hooks and normal weight concrete (SCSSBJNs) are studied through two-point loading tests on ten full-scale SCSSBJNs. The test results show that the SCSSBJN with different parameters under two-point loads exhibits three types of failure modes, i.e., flexure, shear, and combined shear and flexure mode. SCSSBJN failed in different failure modes exhibits different load-deflection behaviours, and the main difference of these three types of behaviours exist in their last working stages. The influences of thickness of steel faceplate, shear span ratio, concrete core strength, and spacing of J-hooks on structural behaviours of SCSSBJN are discussed and analysed. These test results show that the failure mode of SCSSBJN was sensitive to the thickness of steel faceplate, shear span ratio, and concrete core strength. Theoretical models are developed to estimate the cracking, yielding, and ultimate bending resistance of SCSSBJN as well as its transverse cross-sectional shear resistance. The validations of predictions by these theoretical models proved that they are capable of estimating strengths of novel SCSSBJNs.

Performance Evaluation of the High Durability Asphalt Mixture for Bridge Deck Pavements (고내구성 교면포장 아스팔트 혼합물의 공용성 평가에 관한 연구)

  • Park, Hee-Mun;Choi, Ji-Young;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.51-62
    • /
    • 2007
  • Recently, the pavement distresses in the bridge deck have seriously affected the durability of bridge deck and driver's safety. The existing asphalt materials have the limitations in reducing the pavement distresses of brides deck. To protect the bridge deck and withstand the high deflection, it is necessary to develop the asphalt materials with good fatigue resistance for bridge deck pavement. The asphalt binder combined with SBS and two other admixtures has been developed for improving the resistance to fatigue cracking, productivity, and workability for bridge deck pavement. Based on the various binder test results, the developed binder is found to be PG 70-34 indicating very higher resistance against fatigue cracking. Fatigue testing, wheel tracking testing, and moisture susceptibility testing have been conducted to evaluate the performance of asphalt mixtures developed in this study. Laboratory test results show that the developed asphalt material has three times higher fatigue lives than the typical modified asphalt mixture. Full scale accelerated testing was also performed on the typical asphalt mixture and newly developed asphalt mixture to evaluate the full scale performance of asphalt mixtures. Test results indicate that the length of cracking on the new materials is only 38% of the typical material at the 250,000 load repetitions.

  • PDF

Domain Decomposition Strategy for Pin-wise Full-Core Monte Carlo Depletion Calculation with the Reactor Monte Carlo Code

  • Liang, Jingang;Wang, Kan;Qiu, Yishu;Chai, Xiaoming;Qiang, Shenglong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.635-641
    • /
    • 2016
  • Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.

Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge

  • Zhang, Wen-ming;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.367-384
    • /
    • 2017
  • The Maanshan Bridge over Yangtze River in China is a new long-span suspension bridge with double main spans of $2{\times}1080m$ and a closed streamline cross-section of single box deck. The flutter and buffeting performances were investigated via wind tunnel tests of a full bridge aeroelastic model at a geometric scale of 1:211. The tests were conducted in both smooth wind and simulated boundary layer wind fields. Emphasis is placed on studying the interference effect of adjacent span via installing a wind deflector and a wind separating board to shelter one span of the bridge model from incoming flow. Issues related to effects of mid-tower stiffness and deck supporting conditions are also discussed. The testing results show that flutter critical wind velocities in smooth flow, with a wind deflector, are remarkably lower than those without. In turbulent wind, torsional and vertical standard deviations for the deck responses at midspan in testing cases without wind deflector are generally less than those at the midspan exposed to wind in testing cases with wind deflector, respectively. When double main spans are exposed to turbulent wind, the existence of either span is a mass damper to the other. Furthermore, both effects of mid-tower stiffness and deck supporting conditions at the middle tower on the flutter and buffeting performances of the Maanshan Bridge are unremarkable.

A Mechanism Design of the 3-axial Road Simulator Linkage (3축 로드 시뮬레이터 링크부의 메카니즘 설계)

  • 정상화;류신호;김종태;이규태;장완식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.140-147
    • /
    • 2003
  • Full scale durability test in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, hydraulic road simulator is used to carry out the fatigue test and the vibration test. In this paper, the link unit which is able to realize the 3 element forces such as vertical force, lateral force, and longitudinal force that are applied to the road simulator is designed. Also, the designed link is verified with kinematics and inverse-kinematics. From this results, the designed factor satisfied the maximum stroke so that it satisfied the requirements for 3-axial road simulator.

Evaluation on Static Behavior of Long Span Prestressed Concrete Deck (장지간 프리스트레스트 콘크리트 바닥판의 정적 거동 평가)

  • Joo, Sanghoon;Chung, Chulhun;Lee, Hanjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.969-977
    • /
    • 2016
  • In this paper, the static load test of long span PSC deck used in the twin steel plate girder bridge was conducted. To evaluate the structural behavior of long span deck, longitudinally sufficient length of deck is needed, but it is difficult to test the full-scale long span deck due to limit of transportation, setting and laboratory space. Therefore, this study proposed a method to apply longitudinal stiffness of the full-scale deck to the test specimen of longitudinally short length, and it was reinforced with the steel beam. The failure behavior and structural performance of the long span deck were evaluated by the proposed test specimen deck.

A Study on the Failure Behavior of Overhanging Geosynthetic-Reinforced Soil Structure Considering Dilatancy Characteristics of Compacted Soil (다짐토의 다일러턴시 특성을 고려한 역경사형 토목섬유 보강토 구조물의 파괴 거동 분석)

  • Kim Eun-Ra;Kang Ho-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.65-75
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted as an effect arising from the reinforcement works preventing the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan (1994), and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could explain effectively the experimental results which are obtained by a full-scale in-situ model test.

An Application of Elasto-Plastic Model to Overhanging Geosynthetic-Reinforced Soil Structure (역경사형 토목섬유 보강토 구조물에 탄소성 모델의 적용)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.3-12
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted an effect arising from the reinforcement works so as to prevent the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan(1994) and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could be explained effectively the experimental results which are obtained by a full-scale in-situ model test.

  • PDF