• Title/Summary/Keyword: Full wave rectifier

Search Result 63, Processing Time 0.03 seconds

A Design of Wide Input Range Multi-mode Rectifier for Wireless Power Transfer System (넓은 입력 범위를 갖는 무선 전력 전송용 다중 모드 정류기 설계)

  • Choi, Young-Su;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.34-42
    • /
    • 2012
  • In this paper, a wide-input range CMOS multi-mode rectifier for wireless power transfer system is presented. The output voltage of multi-mode rectifier is sensed by comparator and switches are controlled based on it. The mode of multi-mode rectifier is automatically selected by the switches among full-wave rectifier, 1-stage voltage multiplier and 2-stage voltage multiplier. In full-wave rectifier mode, the rectified output DC voltage ranges from 9 V to 19 V for a input AC voltage from 10 V to 20 V. However, the input-range of the multi-mode rectifier is more improved than that of the conventional full-wave rectifier by 5V, so the rectified output DC voltage ranges from 7.5 V to 19 V for a input AC voltage from 5 V to 20 V. The power conversion efficiency of the multi-mode rectifier is 94 % in full-wave rectifier mode. The proposed multi-mode rectifier is fabricated in a $0.35{\mu}m$ CMOS process with an active area of $2500{\mu}m{\times}1750{\mu}m$.

Performance Comparison of Full-Wave Rectifiers for Vibration-Energy Harvesting (진동에너지 하베스팅을 위한 전파 정류기 성능 비교)

  • Yoon, Eun-Jung;Yang, Min-Jae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.278-281
    • /
    • 2014
  • This paper presents the performance comparison of three types of full-wave rectifiers for vibration energy harvesting. The first rectifier is consisted of two active diodes and two MOSFETs, and the comparators of the active diodes are powered from the output of the rectifier. The second one is a 2-stage full-wave rectifier. It comprises the basic rectifier consisted of four MOSFETs and an active diode. The comparator is also powered from the output of the rectifier. The third one is an input powered rectifier. It has the same structure as the second rectifier, but the comparator is powered from the input of the rectifier. These rectifiers have been designed using a 0.35um CMOS process and their performances have been compared through simulations. In terms of efficiency, the first rectifier shows the best performance at heavy loads, but the second one is suitable at light loads. When the power consumption during absence of vibration is more important than efficiency, the input-powered rectifier is proper.

  • PDF

Study on the Rectifier Circuits for Wireless Energy Transmission (무선 에너지 전송을 위한 정류회로에 관한 연구)

  • Shin, Doo-Soub;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.90-94
    • /
    • 2011
  • In this paper, the energy transfer is associated with high frequency band and try to analysis the rectifier circuit structure and characteristics and find ways to maximum efficiency. Input signal at 13.56MHz is converted output DC signal with the experiments and measurements. Rectifier cirsuits can be divided into the half-wave, full-wave, bridge rectifier circuit. Research to the present with the passive components are carried out with a focus on efficiency improvements. Factors affecting the efficiency of rectification is dependent on the characteristics of the device. In this experiment, about 70% efficiency can be measured. By using an improved device for high efficiency could be obtained higher efficiency.

A study for gain-controllable precision full-wave rectifier (이득-제어 가능한 정밀 전파 정류기에 관한 연구)

  • 이주찬;박동권;차형우
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1149-1152
    • /
    • 1999
  • A gain controllable precision full-wave rectifier for the measurements of small-signal voltage is presented. It consists of gain controllable inverter superdiode and noninverter superdiode. The results of simulation with PSpice and experiment on breadboard show that the proposed rectifier has the characteristic of precise rectification and amplification for small signal voltage.

  • PDF

OTA-based precision full-wave rectifier

  • Riewtuja, V.;Chaikla, A.;Tammarugwattana, N.;Julsereewong, P.;Surakampontorn, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.259-261
    • /
    • 1999
  • An operational transconductance amplifier (OTA) based precision full-wave rectifier circuit is presented in this article. The proposed circuit has a very sharp corner in the DC transfer characteristic and simple configuration comprised three OTAs and one current mirror. The temperature dependence of the OTA transconductance is reduced. Experimental results demonstrating the characteristic of the circuit are included.

  • PDF

Full-Wave Rectifier with Vibration Detector for Vibrational Energy Harvesting Systems

  • Yoon, Eun-Jung;Yang, Min-Jae;Park, Jong-Tae;Yu, Chong-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.255-260
    • /
    • 2016
  • In this paper, a full-wave rectifier (FWR) with a simple vibration detector suitable for use with vibrational energy harvesting systems is presented. Conventional active FWRs where active diodes are used to reduce the diode voltage drop and increase the system efficiency are usually powered from the output. Output-powered FWRs exhibit relatively high efficiencies because the comparators used in active diodes are powered from the stable output voltage. Nevertheless, a major drawback is that these FWRs consume power from the output storage capacitor even when the system is not harvesting any energy. To overcome the problem, a technique using a simple vibration detector consisting of a peak detector and a level converter is proposed. The vibration detector detects whether vibrational energy exists or not in the input terminal and disables the comparators when there is no vibrational energy. The proposed FWR with the vibration detector is designed using a $0.35-{\mu}m$ CMOS process. Simulation results have verified the effectiveness of the proposed scheme. By using the proposed vibration detector, a decrease in leakage current by approximately 67,000 times can be achieved after the vibration disappears.

A high frequency CMOS precision full-wave rectifier

  • Riewruja, V.;Wangwiwattana, C.;Guntapong, R.;Chaikla, A.;Linthong, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.514-514
    • /
    • 2000
  • In this article, the realization of a precision full-wave rectifier circuit for analog signal processing, which operates throughout in the current domain, is presented. The circuit makes use of a MOS class B/AB configuration, and provides a wide dynamic range and wide-band capability. The rectifier has a simple circuit configuration and is suitable for implementing in CMOS integrated circuit form as versatile building block. The characteristic of the circuit exhibits a low distortion en the output signal at low level input signal. PSPICE simulation results demonstrating the characteristic of the proposed circuit are included.

  • PDF

Design and Fabrication of RF-DC Converters for 5.8 GHz Microwave Wireless Power Transmission (5.8 GHz 마이크로파 무선전력전송을 위한 RF-DC 변환기의 설계 및 구현)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.84-87
    • /
    • 2015
  • We have designed and fabricated two different RF-DC Converters called doubler for 5.8GHz Microwave Wireless Power Transmission. The doubler as RF-DC Converter makes the rectified voltage be doubled. We measured and compared voltages of the doublers with those of the previous full-wave rectifying RF-DC Converter. The doublers show rectified double voltages. However, the full-wave rectifying converter has a high efficiency due to the suppression of reflecting harmonics. The other fabricated doublers causes so many harmonics that they can't convert the low-power RF to the full DC. In this paper, we show that the different doublers doesn't double the rectifying voltages compared with those of the full-wave rectifying converter and give a reason about that.

A Design of Full-wave Rectifier for Measurement Instrument (계측기용 새로운 전파정류 회로 설계)

  • Bae Sung-Hoon;Lim Shin-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.53-59
    • /
    • 2006
  • This paper describes the new design technique of full wave rectifier (FWR) for precise measurement instrument and the chip implementation of this FWR circuit with measurement results. Conventional circuits have some problems of complex design and limited output range( $VDD/2{\sim}VLIIV1IT+$). Proposed FWR circuit was simply designed with two 2x1 MUXs, one high speed comparator, and one differential difference amplifier(DDA). One rail-to-rail differential difference amplifier(DDA) performs the DC level shifting to VSS and 2X amplification simultaneously, and enables the full range ($Vss{\sim}VDD$) operation. The proposed FWR circuits shows more than 50% reduction of chip area and power consumption compared to conventional one. Proposed circuit was implemented with 0.35um 1-poly 2-metal CMOS process. Core size is $150um{\times}450um$ and power dissipation is 840uW with 3.3V single supply.

Development of PWM Converter System for Solar Cell Silicon Ingot Glowing 120kW 3kA (태양전지 실리콘 결정 성장용 120kW 3kA PWM 컨버터 시스템 개발)

  • Kim, Min-Huei;Park, Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • This paper is research result for a development of solar cell silicon ingot glowing(SCSIG) PWM converter system for 120[kW] 3[kA]. The system include 3-phase AC-DC rectifier diode converter of input voltage AC 460[V] and 60[Hz], DC-AC single phase full bridge PWM inverter of high frequency, AC-DC single-phase full wave rectifier using center-tapped of transformer for low voltage 50[V] and large current 3,000[A], carbon resistor load 0.2 [$m{\Omega}$]. PWM switching frequency for IGBT inverter control set 15KHz. The suggested researching contents are designed data sheets of power converter system, PSIM simulation, operating characteristics and analysis results of developed SCSIG system.