• Title/Summary/Keyword: Full Scale Fire Test

Search Result 77, Processing Time 0.022 seconds

On the Method for Hot-Fire Modeling of High-Frequency Combustion Instability in Liquid Rocket Engines

  • Sohn, Chae-Hoon;Seol, Woo-Seok;Valery P. Pikalov
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1010-1018
    • /
    • 2004
  • This study presents the methodological aspects of combustion instability modeling and provides the numerical results of the model (sub-scale) combustion chamber, regarding geometrical dimensions and operating conditions, which are for determining the combustion stability boundaries using the model chamber. An approach to determine the stability limits and acoustic characteristics of injectors is described intensively. Procedures for extrapolation of the model operating parameters to the actual conditions are presented, which allow the hot-fire test data to be presented by parameters of the combustion chamber pressure and mixture (oxidizer/fuel) ratio, which are customary for designers. Tests with the model chamber, based on the suggested scaling method, are far more cost-effective than with the actual (full-scale) chamber and useful for injector screening at the initial stage of the combustor development in a viewpoint of combustion instabilities.

An Experimental Study of Smoke Movement and Evacuation in Road Tunnel (도로터널내 연기거동 및 피난에 관한 실험적 연구)

  • Kang Hyun-Wook;Lee Ho-Seok;Shin Young-Wan;Lee In-Ki
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.335-340
    • /
    • 2005
  • Recently, According to increased tunnel accident, a matter of concern in tunnel fire safety is on an interesting trend. In case of tunnel fire, Evacuation is a primary factor for refugee safety. Therefore safety measures should be taken to increase capability of evacuation. Evacuation walking speed and characteristics of movement in tunnel is differ from building or outdoor site so, these characteristics must be considered in tunnel safety planning. In this study has performed to evaluate the smoke movement and characteristics of evacuation by full-scale test method. and aimed for basic data establishment in characteristics of evacuation for tunnel safety system design.

  • PDF

Full-scale Fire Suppression Test for Application of Water Mist System in Road Tunnel (미분무수 소화시스템의 도로터널 적용을 위한 실물 화재 실험)

  • Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae;Lee, Yu-Whan;So, Soo-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.171-174
    • /
    • 2010
  • 도로터널에서의 미분무수 소화시스템의 적용 가능성을 검토하기 위해 실물 화재 실험을 수행하였다. 적용된 화원은 실물 승용차 화재와 유류화재를 모사한 화원면적 $1.4m^2$의 heptane pool 화재이며, 기존 도로터널에 설치된 저압 물분무 시스템과 고압 미분부수 소화시스템과의 냉각효과 비교실험을 수행하였다. 도로터널 내의 환기조건을 구현하기 위해 실물모형 터널의 한 편에 터널 유속(0.9~3.8 m/sec 범위) 발생장치를 설치하였으며, 화원에서 하류 방향으로 터널 내 온도분포를 측정하였다. 실험 결과 1/5의 유량을 사용하는 고압 미분무수 소화시스템은 저압 물분무 시스템과 동등한 수준의 냉각효과를 보였다.

  • PDF

Development of Loaded Stream Fire Extinguishing Systems for Underground Transmission Cables (지중송전선로 접속부용 미분무 강화액 소화설비의 개발연구)

  • Lee, Sung-Mo
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.93-98
    • /
    • 2008
  • Full-scale fire extinguishment tests were conducted to develop loaded stream fire extinguishing systems for protecting underground transmission cables. The dimension of test mock-up was 5.5m height${\times}3m$ width ${\times}6m$ length, and six 154kV OF cables were piled up. Gasoline was used to ignite cates. Linear heat detection cables were installed on top of 154 kV OF cable and discharge nozzles were installed on the top and sidewalls, respectively. As a result, both surface fires and deap-seated fires were extinguished successfully within the specified 3 minutes by discharging loaded stream agent.

Full-Scale Test of Smoke-Control Performance of a Subway Tunnel (지하철 본선터널 제연성능 실물 실험)

  • Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.94-102
    • /
    • 2011
  • Hot smoke test is done in a subway tunnel. Alcohol trays of 1.0 MW and smoke generators are used for generating hot smoke. The fans equipped with the tunnel are successively run 9 min after smoke generation. It is verified how hot smoke is controlled by fans. Velocity and direction of flow, temperature and smoke density are measured and analyzed for smoke control performance of the tunnel with fans and analyzed from the fire-safety-point of view. Velocity of smoke flow is obtained by using measured velocity and temperature at the ceiling of the tunnel. The time when smoke-control flow is builded up is different for the different positions. Velocity distributions at various positions will be used for the boundaries and the comparison data in numerical simulations for evaluation on smoke-control facilities of subway tunnel.

Evaluation test of applicability of Compressed Air Foam fire extinguishing system for train fire at rescue station in Subsea tunnel (해저터널 구난역 열차화재시 압축공기포(Compressed Air Foam) 소화설비의 적용성 평가 실험)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.413-418
    • /
    • 2016
  • Recently, a mega project such as Korea-China or Korea-Japan undersea tunnel project has been emerged for detail discussion and the interest in undersea tunnel is on the rise. More severe damage by train fire is expected in undersea tunnel comparing to ground tunnel and thus the study on more efficient fire extinguishing system, besides existing disaster prevention design is underway. To that end, a full-scale fire tests using CAF fire extinguishing system which has been developed by modifying traditional foam fire extinguishing system for fire suppression at rescue station in timely manner were conducted over 7 times. The test was conducted after setting the rescue station in virtual tunnel with a car of KTX. As a result of using compressed air foam directly to the fire source, 30 liter of Heptane combustibles was extinguished within 1 minutes. Applicability of compressed air foam to train fire at rescue station in undersea tunnel was has been proven and further study is considered required while changing the nozzle angle and location so as to achieve quick and easy extinguishing goal, making use of the advantage of CAF, as well as to reduce the fire water and chemicals required.

A Study on Flame Spread Prevention of Sandwich Panel (복합자재 화재확산방지구조에 대한 연구)

  • Cho, Nam-Wook;Kim, Do-Hyun;Shim, Ji-Hun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.84-90
    • /
    • 2015
  • Multi-layered material (sandwich panel) consists of double-sided steel plate which is incombustible material or similar material and core material which is not incombustible material. In case of sandwich panel which uses combustible material as insulation, flames spread inside the steel plate at the time of fire so that it is difficult to extinguish fire from the outside and flames spread rapidly and may cause the building to collapse. The current Building Act requires the sandwich panel to secure fire-retardant performance according to the purpose and size of building. In this study, the fire spreading prevention structure applied to partial exterior walls was applied to multi-layered material and its effect was measured through full scale fire test and the possibility to secure fire safety of buildings by applying the fire spreading prevention structure to multi-layered material in future was presented.

Combustion Stability Characteristics of the Model Chamber with Various Configurations of Triplet Impinging-Jet Injectors

  • Sohn Chae-Hoon;Seol Woo-Seok;Shibanov Alexander A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.874-881
    • /
    • 2006
  • Combustion stability characteristics in actual full-scale combustion chamber of a rocket engine are investigated by experimental tests with the model (sub-scale) chamber. The present hot-fire tests adopt the combustion chamber with three configurations of triplet impinging-jet injectors such as F-O-O-F, F-O-F, and O-F-O configurations. Combustion stability bound-aries are obtained and presented by the parameters of combustion-chamber pressure and mixture (oxidizer/fuel) ratio. From the experimental tests, two instability regions are observed and the pressure oscillations have the similar patterns irrespective of injector configuration. But, the O-F-O injector configuration shows broader upper-instability region than the other configurations. To verify the instability mechanism for the lower and upper instability regions, air-purge acoustic test is conducted and the photograph or the flames is taken. As a result, it is found that the pressure oscillations in the two regions can be characterized by the first impinging point of hydraulic jets and pre-blowout combustion, respectively.

The Study on the Fire Monitoring Dystem for Full-scale Surveillance and Video Tracking (전방위 감시와 영상추적이 가능한 화재감시시스템에 관한 연구)

  • Baek, Dong-hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.40-45
    • /
    • 2018
  • The omnidirectional surveillance camera uses the object detection algorithm to level the object by unit so that broadband surveillance can be performed using a fisheye lens and then, it was a field experiment with a system composed of an omnidirectional surveillance camera and a tracking (PTZ) camera. The omnidirectional surveillance camera accurately detects the moving object, displays the squarely, and tracks it in close cooperation with the tracking camera. In the field test of flame detection and temperature of the sensing camera, when the flame is detected during the auto scan, the detection camera stops and the temperature is displayed by moving the corresponding spot part to the central part of the screen. It is also possible to measure the distance of the flame from the distance of 1.5 km, which exceeds the standard of calorific value of 1 km 2,340 kcal. In the performance test of detecting the flame along the distance, it is possible to be 1.5 km in width exceeding $56cm{\times}90cm$ at a distance of 1km, and so it is also adaptable to forest fire. The system is expected to be very useful for safety such as prevention of intrinsic or surrounding fire and intrusion monitoring if it is installed in a petroleum gas storage facility or a storing place for oil in the future.

Experimental Study to Estimate the Required Flow of Fire Extinguishing System for Flame Spread Prevention on Composite Panel (복합패널 화재확산 방지를 위한 소화시스템의 소요유량 산정을 위한 실험적 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong;Kim, Yang-Kyun
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.33-39
    • /
    • 2017
  • Composite panel refers to the particular plywood produced in a way of stacking the different kinds of material in sandwich form and adhering them using adhesives and is widely used as building material for its constructability and cost efficiency. But as the surface is finished with steel plate, fire extinguishing agent cannot reach to the core material because of such steel plate on surface which causes the difficulties in suppressing the fire as well as in fire-fighting activities due to collapse. This study, to deal with such problem, is intended to set the fire pipe in core material to prevent the fire from spreading and in a bid to achieve this using minimized fire water, water supply test device was fabricated to estimate the required water flow of fire extinguisher and consequently, optimal water flow (0.5 L/min) was determined through a full-scale fire test.