• Title/Summary/Keyword: Full Duplex Relay

Search Result 32, Processing Time 0.024 seconds

Power allocation for full-duplex NOMA relaying based underlay D2D communications

  • Li, Song;Li, Shuo;Sun, Yanjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.16-33
    • /
    • 2019
  • In this paper, a full-duplex NOMA relaying based underlay device-to-device (D2D) communication scheme is proposed, in which D2D transmitter assists cellular downlink transmission as a full-duplex relay. Specifically, D2D transmitter receives signals from base station and transmits the superposition signals to D2D receiver and cellular user in NOMA scheme simultaneously. Furthermore, we investigate the power allocation under the proposed scheme, aiming to maximize D2D link's achievable transmit rate under cellular link's transmit rate constraint and total power constraint. To tackle the power allocation problem, we first propose a power allocation method based on linear fractional programming. In addition, we derive closed-form expressions of the optimal transmit power for base station and D2D transmitter. Simulation results show that the performance of two solutions matches well and the proposed full-duplex NOMA relaying based underlay D2D communication scheme outperforms existing full-duplex relaying based D2D communication scheme.

Secrecy Capacity for Full-Duplex Massive MIMO Relaying Systems With Low-Resolution ADCs

  • Antwi-Boasiako, Bridget Durowaa;Lee, Kyoung-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.286-287
    • /
    • 2019
  • In this paper, we consider an amplify-and-forward (AF) full duplex (FD) massive-antenna relay (or base station) aiding communication between K single-antenna source and destination pairs whose transmissions are overheard by one single-antenna eavesdropper. Maximum ratio combining (MRC) and maximum ratio transmission (MRT) processing is employed at the relay. The secrecy performance of the system is then derived with both relay and destination being equipped with low resolution analog-to-digital converters (ADCs). The results show the detrimental effect of the eavesdropper's presence on the sum rate of the system.

  • PDF

Power Allocation and Mode Selection in Unmanned Aerial Vehicle Relay Based Wireless Networks

  • Zeng, Qian;Huangfu, Wei;Liu, Tong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.711-732
    • /
    • 2019
  • Many unmanned aerial vehicle (UAV) applications have been employed for performing data collection in facilitating tasks such as surveillance and monitoring objectives in remote and dangerous environments. In light of the fact that most of the existing UAV relaying applications operate in conventional half-duplex (HD) mode, a full-duplex (FD) based UAV relay aided wireless network is investigated, in which the UAV relay helps forwarding information from the source (S) node to the destination (D). Since the activated UAV relays are always floating and flying in the air, its channel state information (CSI) as well as channel capacity is a time-variant parameter. Considering decode-and-forward (DF) relaying protocol in UAV relays, the cooperative relaying channel capacity is constrained by the relatively weaker one (i.e. in terms of signal-to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR)) between S-to-relay and relay-to-D links. The channel capacity can be optimized by adaptively optimizing the transmit power of S and/or UAV relay. Furthermore, a hybrid HD/FD mode is enabled in the proposed UAV relays for adaptively optimizing the channel utilization subject to the instantaneous CSI and/or remaining self-interference (SI) levels. Numerical results show that the channel capacity of the proposed UAV relay aided wireless networks can be maximized by adaptively responding to the influence of various real-time factors.

A Novel Social Aware Reverse Relay Selection Scheme for Underlaying Multi- Hop D2D Communications

  • Liang Li;Xinjie Yang;Yuanjie Zheng;Jiazhi Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2732-2749
    • /
    • 2023
  • Device-to-Device (D2D) communication has received increasing attention and been studied extensively thanks to its advantages in improving spectral efficiency and energy efficiency of cellular networks. This paper proposes a novel relay selection algorithm for multi-hop full-duplex D2D communications underlaying cellular networks. By selecting the relay of each hop in a reverse manner, the proposed algorithm reduces the heavy signaling overhead that traditional relay selection algorithms introduce. In addition, the social domain information of mobile terminals is taken into consideration and its influence on the performance of D2D communications studied, which is found significant enough not to be overlooked. Moreover, simulations show that the proposed algorithm, in absence of social relationship information, improves data throughput by around 70% and 7% and energy efficiency by 64% and 6%, compared with two benchmark algorithms, when D2D distance is 260 meters. In a more practical implementation considering social relationship information, although the proposed algorithm naturally achieves less throughput, it substantially increases the energy efficiency than the benchmarks.

Distributed Relay Power Control Scheme for Multi-cell OFDM-TDD Based Mobile Relay System (OFDM-TDD 기반 이동 릴레이 시스템을 위한 다중 셀 분산형 릴레이 전력 제어 방법)

  • Cho, Young-Min;Park, Jeong-Hun;Hwang, Seung-Gye;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.562-570
    • /
    • 2011
  • In this paper, a distributed mobile relay power control (DMRPC) scheme for maximizing individual cell throughput is proposed for mobile relay aided multi-cell orthogonal frequency division multiplexing (OFDM)-time division duplex (TDD) system. In the system with DMRPC, the power levels of relay's are controlled by individual cell without cell cooperation and signalling overhead. It is demonstrated by numerical simulation that DMRPC provides the better cell throughput performance than either the full power relay aided system or conventional system without relay does. Moreover, it is also shown that relay aided systems with DMRPC, and the conventional system have almost identical cell edge throughput, while full power relay aided systems show worse performance in cell edge throughput.

A Synchronization Technique for OFDM-based Full Duplex Relays with Frequency-domain Feedback Interference Canceller (주파수 영역 궤환 간섭 신호 제거기를 갖는 OFDM 기반 전이중 릴레이를 위한 동기화 기법)

  • Yoo, Hyun-Il;Woo, Kyung-Soo;Park, Chang-Hwan;Kim, Jae-Kwon;Jung, Sung-Yoon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.468-475
    • /
    • 2009
  • In OFDM-based Full Duplex Relays (FDR) with Decode and Forward (DF) scheme, an interference cancellation technique in the frequency domain is more efficient than the one in the time domain. However, an Inter-Symbol Interference (ISI) and Inter-Carrier Interference (ICI) may occur due to the timing mismatch between the feedback interference signal and the desired signal from Base Station (BS) when the feedback interference cancellation and demodulation are performed in the frequency domain. In this paper, the effects of timing mismatch on the synchronous type and asynchronous type of OFDM-based FDR are analyzed for uplink and downlink cases. Then, synchronization procedure and methods for reducing ISI and ICI in OFDM-based FDR with frequency-domain feedback interference canceller are proposed and verified by computer simulation.

Outage Probability of a Two-Way Full-Duplex Relay Network with Imperfect CSI (불완전한 채널 정보를 갖는 전이중 양방향 중계 네트워크의 불능 확률 성능 분석)

  • Choi, Dongwook;Lee, Jae Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.67-68
    • /
    • 2012
  • 전이중(full-duplex) 양방향 중계 네트워크는 전이중 방식을 사용하는 중계기에서 물리 계층 네트워크 부호화(physical layer network coding) 혹은 중첩 부호화(superposition coding)을 사용하여 기존 반이중(half duplex) 중계기를 사용하는 양방향 중계 네트워크에 비해 높은 주파수 효율을 제공한다. 본 논문에서는 전이중 양방향 중계 네트워크를 고려하여 전이중 방식에서 필연적으로 발생하는 루프간섭 신호의 영향을 살펴보았다. 여기에서 사용자 및 중계기는 루프간섭 신호를 제거하기 위해 루프간섭 신호를 추정한다. 하지만 루프간섭 신호를 추정할 때 추정 오류가 발생하여 수신 신호에서 루프간섭 신호를 완벽하게 제거하기는 어렵다. 모의실험에서는 이로 인해 발생할 수 있는 성능 변화를 불능 확률을 통해 분석하였다.

  • PDF

Performance Analysis of Full-Duplex Relay Networks with Residual Self-Interference and Crosstalk

  • Liu, Guoling;Feng, Wenjiang;Zhang, Bowei;Ying, Tengda;Lu, Luran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4957-4976
    • /
    • 2016
  • This paper investigates the error performance of the amplify-and-forward (AF) relaying systems in the context of full-duplex (FD) communication. In addition to the inherent self-interference (SI) due to simultaneous transmission and reception, coexistent FD terminals may cause crosstalk. In this paper, we utilize the information exchange via the crosstalk channel to construct a particular distributed space-time code (DSTC). The residual SI is also considered. Closed-form pairwise error probability (PEP) is first derived. Then we obtain the upper bound of PEP in high transmit power region to provide more insights of diversity and coding gain. The proposed DSTC scheme can attain full cooperative diversity if the variance of SI is not a function of the transmit power. The coding gain can be improved by lengthening the frame and proper power control. Feasibility and efficiency of the proposed DSTC are verified in numerical simulations.

Echo Cancellation in Relay Systems (Full Duplex 릴레이 시스템에서의 자기 신호 제거)

  • Woo, Choong-Chae;Ju, Hyung-Sik
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.76-80
    • /
    • 2012
  • We propose a new relay system which use echo cancellation in relay station. In the proposed relay system, a half of time resource is required to transmit a symbol compared to conventional relay system. We show the echo cancellation method and frame structure of the proposed system. Simulation result shows that the proposed system has twice capacity than that of the conventional system.

Energy-efficient full-duplex UAV relaying networks: Trajectory design for channel-model-free scenarios

  • Qi, Nan;Wang, Wei;Ye, Diliao;Wang, Mei;Tsiftsis, Theodoros A.;Yao, Rugui
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.436-446
    • /
    • 2021
  • In this paper, we propose an energy-efficient unmanned aerial vehicle (UAV) relaying network. In this network, the channels between UAVs and ground transceivers are model-free. A UAV acting as a flying relay explores better channels to assist in efficient data delivery between two ground nodes. The full-duplex relaying mode is applied for potential energy efficiency (EE) improvements. With the genetic algorithm, we manage to optimize the UAV trajectory for any arbitrary radio map scenario. Numerical results demonstrate that compared to other schemes (eg, fixed trajectory/speed policies), the proposed algorithm performs better in terms of EE. Additionally, the impact of self-interference on average EE is also investigated.