• Title/Summary/Keyword: Fukushima nuclear accident

Search Result 225, Processing Time 0.033 seconds

A Phenomenological Study on the Elementary Teachers' Perception towards Socio-Scientific Issue: Around the Fukushima Nuclear Power Plant Accident (과학 관련 사회적 문제(socio-scientific issue)에 대한 초등학교 교사들의 인식에 관한 현상학적 연구: 후쿠시마 원전사고를 중심으로)

  • Wee, Soo-Meen;Jang, Keun-Young;Lim, Sung-Man;Yang, Il-Ho;Kim, Soon-Mi
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.6 no.3
    • /
    • pp.174-184
    • /
    • 2013
  • The purpose of this study was to investigate the awareness of elementary school teachers on the socio-scientific issues. Fukushima Nuclear Power Plant Accident was used by concrete issue connected with SSI for this study. Participants in this study were twelve elementary school teachers studying at K University Graduate School of Education, located in the central region, who underwent a semi-structured interview. The study method was the phenomenological research method which is one of the qualitative research methods, and the interview papers had been examined by three scientific experts. As a result of the study, it was divided into twenty six themes, eight theme clusters, and two categories, and considered the thoughts on the Fukushima nuclear power plant accident, its influence on Korea, the relationship between science and society as a result of the Fukushima nuclear power plant accident, interested in social issues related to science, application in class, response from students and the influence on students. Teachers had a general understanding of science-related social issues, but did not have much interest in the subject. However, they mentioned that to apply the issues in the curriculum would have a positive influence and encourage scientific motivation in students and, furthermore, helped them to develop the awareness of science in their surroundings. A greater interest in socio-scientific issues need to require from teachers and, through including these issues in the curriculum, we should have positive influence in developing science education.

Development Status of Accident-tolerant Fuel for Light Water Reactors in Korea

  • Kim, Hyun-Gil;Yang, Jae-Ho;Kim, Weon-Ju;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2016
  • For a long time, a top priority in the nuclear industry was the safe, reliable, and economic operation of light water reactors. However, the development of accident-tolerant fuel (ATF) became a hot topic in the nuclear research field after the March 2011 events at Fukushima, Japan. In Korea, innovative concepts of ATF have been developing to increase fuel safety and reliability during normal operations, operational transients, and also accident events. The microcell $UO_2$ and high-density composite pellet concepts are being developed as ATF pellets. A microcell $UO_2$ pellet is envisaged to have the enhanced retention capabilities of highly radioactive and corrosive fission products. High-density pellets are expected to be used in combination with the particular ATF cladding concepts. Two concepts-surface-modified Zr-based alloy and SiC composite material-are being developed as ATF cladding, as these innovative concepts can effectively suppress hydrogen explosions and the release of radionuclides into the environment.

Comparison of Gene Mutation Frequency in $Tradescantia$ Stamen Hair Cells Detected after Chernobyl and Fukushima Nuclear Power Plant Accidents

  • Panek, Agnieszka;Miszczyk, Justyna;Kim, Jin-Kyu;Cebulska-Wasilewska, Antonina
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • Our aim was to investigate the genotoxicity of ambient air in the Krak$\acute{o}$w area after Fukushima Nuclear Power Plant (NPP) accident and compare with results from Chernobyl fallout. For the detection of ambient air genotoxicity the technique for screening gene mutation frequency in somatic cells of the $Tradescantia$ stamen hairs ($Trad$-SH assay) was used. Since 11th of March 2011 (Fukushima NPP accident), several pots containing at least 15 shoots of bioindicating plants were exposed to ambient air at 2 sites in the Krak$\acute{o}$w surrounding area, one in the city center, and about 100 pots in a control site (in the glasshouse of the Institute of Nuclear Physics) Continuous screening of mutations was performed. Progenies of 371,090 cells exposed were analyzed. Mutation frequency obtained in the first 10 days has shown a mean control level (GMF*100=$0.06{\pm}0.01$). At scoring period related to influence of a potential Fukushima fallout, a significant increase of gene mutation frequencies above the control level was observed at each site in the range, 0.10~0.33 depending on the location, (mean value for all sites GMF*100=$0.19{\pm}0.05$) that was associated with a strong expression of toxic effects. In the reported studies following the Chernobyl NPP accident monitoring $in$ $situ$ of the ambient air genotoxicity was performed in the period since April $29^{th}$ till June $3^{rd}$ 1986 also with Trad-SH bioindicator. In general, mutation frequency increases due to Chernobyl fallout(GMF*100=$0.43{\pm}0.02$) were corresponding to fluctuation of radioactivity in the air reported from physical measures, and to published reports about increase in chromosome aberration levels. Although, recent data obtained from monitoring of the ambient air quality in the Krak$\acute{o}$w and surroundings are lower when compared to results reported after Chernobyl NPP accident, though results express a significant increase above the control level and also are corresponding with increased air radioactivity reported from physical measurements. Statistically significant in comparison to control increase in gene mutation rates and more prolonged than that after Chernobyl fallout increase of GMF was observed during the period following the Fukushima NPP failure.

Countermeasures for Management of Off-site Radioactive Wastes in the Event of a Major Accident at Nuclear Power Plants

  • Lee, Ji-Min;Hong, Dae Seok;Shin, Hyeong Ki;Kim, Hyun Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.339-347
    • /
    • 2022
  • Major accidents at nuclear power plants generate huge amounts of radioactive waste in a short period of time over a wide area outside the plant boundary. Therefore, extraordinary efforts are required for safe management of the waste. A well-established remediation plan including radioactive waste management that is prepared in advance will minimize the impact on the public and environment. In Korea, however, only limited plans exist to systematically manage this type of off-site radioactive waste generating event. In this study, we developed basic strategies for off-site radioactive waste management based on recommendations from the IAEA (International Atomic Energy Agency) and NCRP (National Council on Radiation Protection and Measurements), experiences from the Fukushima Daiichi accident in Japan, and a review of the national radioactive waste management system in Korea. These strategies included the assignment of roles and responsibilities, development of management methodologies, securement of storage capacities, preparation for the use of existing infrastructure, assurance of information transparency, and establishment of cooperative measures with international organizations.

The Transport of Radionuclides Released From Nuclear Facilities and Nuclear Wastes in the Marine Environment at Oceanic Scales

  • Perianez, Raul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.321-338
    • /
    • 2022
  • The transport of radionuclides at oceanic scales can be assessed using a Lagrangian model. In this review an application of such a model to the Atlantic, Indian and Pacific oceans is described. The transport model, which is fed with water currents provided by global ocean circulation models, includes advection by three-dimensional currents, turbulent mixing, radioactive decay and adsorption/release of radionuclides between water and bed sediments. Adsorption/release processes are described by means of a dynamic model based upon kinetic transfer coefficients. A stochastic method is used to solve turbulent mixing, decay and water/sediment interactions. The main results of these oceanic radionuclide transport studies are summarized in this paper. Particularly, the potential leakage of 137Cs from dumped nuclear wastes in the north Atlantic region was studied. Furthermore, hypothetical accidents, similar in magnitude to the Fukushima accident, were simulated for nuclear power plants located around the Indian Ocean coastlines. Finally, the transport of radionuclides resulting from the release of stored water, which was used to cool reactors after the Fukushima accident, was analyzed in the Pacific Ocean.

Study on multi-unit level 3 PSA to understand a characteristics of risk in a multi-unit context

  • Oh, Kyemin;Kim, Sung-yeop;Jeon, Hojun;Park, Jeong Seon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.975-983
    • /
    • 2020
  • Since the Fukushima Daiichi accident in 2011, concerns for the safety of multi-unit Nuclear Power Plant (NPP) sites have risen. This is because more than 70% of NPP sites are multi-unit sites that have two or more NPP units and a multi-unit accident occurred for the first time. After this accident, Probability Safety Assessment (PSA) has been considered in many countries as one of the tools to quantitatively assess the safety for multi-unit NPP sites. One of the biggest concerns for a multi-unit accident such as Fukushima is that the consequences (health and economic) will be significantly higher than in the case of a single-unit accident. However, many studies on multi-unit PSA have focused on Level 1 & 2 PSA, and there are many challenges in terms of public acceptance due to various speculations without an engineering background. In this study, two kinds of multi-unit Level 3 PSA for multi-unit site have been carried out. The first case was the estimation of multi-unit risk with conservative assumptions to investigate the margin between multi-unit risk and QHO, and the other was to identify the effect of time delays in releases between NPP units on the same site. Through these two kinds of assessments, we aimed at investigating the level of multi-unit risk and understanding the characteristics of risk in a multiunit context.

Radioactivity data analysis of 137Cs in marine sediments near severely damaged Chernobyl and Fukushima nuclear power plants

  • Song, Ji Hyoun;Kim, TaeJun;Yeon, Jei-Won
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.366-372
    • /
    • 2020
  • Using several accessible published data sets, we analyzed the temporal change of 137Cs radioactivity (per unit mass of sample) in marine sediments and investigated the effect of the water content of sediment on the 137Cs radioactivity, to understand the behavior of 137Cs present in marine environments. The 137Cs radioactivity in sediments decreased more slowly in the Baltic Sea (near the Chernobyl nuclear power plant) than in the ocean near the Fukushima Daiichi nuclear power plant (FDNPP). The 137Cs radioactivity in the sediment near the FDNPP tended to increase as the water content increased, and the water content decreased at certain sampling sites near the FDNPP for several years. Additionally, the decrease in the water content contributed to 51.2% of the average 137Cs radioactivity decrease rate for the same period. Thus, it may be necessary to monitor both the 137Cs radioactivity and the water content for marine sediments to track the 137Cs that was discharged from the sites of Chernobyl and Fukushima nuclear power plants where severe accidents occurred.

Radiation Monitoring in the Residential Environment: Time Dependencies of Air Dose Rate and 137Cs Inventory

  • Yoshimura, Kazuya;Nakama, Shigeo;Fujiwara, Kenso
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.30-38
    • /
    • 2022
  • Background: Residential areas have some factors on the external exposure of residents, who usually spend a long time in these areas. Although various survey has been carried out by the government or the research institutions after the Fukushima Daiichi Nuclear Power Plant accident, the mechanism of radiocesium inventory in the terrestrial zone has not been cleared. To better evaluate the radiation environment, this study investigated the temporal changes in air dose rate and 137Cs inventories (Bq/m2) in residential areas and agricultural fields. Materials and Methods: Air dose rate and 137Cs inventories were investigated in residential areas located in an evacuation zone at 5-8 km from the Fukushima Daiichi Nuclear Power Plant. From December 2014 to September 2018, the air dose rate distribution was investigated through a walking survey (backpack survey), which was conducted by operators carrying a γ-ray detector on their backs. Additionally, from December 2014 to January 2021, the 137Cs inventories on paved and permeable grounds were also measured using a portable γ-ray detector. Results and Discussion: In the areas where decontamination was not performed, the air dose rate decreased faster in residential areas than in agricultural fields. Moreover, the 137Cs inventory on paved surfaces decreased with time owing to the horizontal wash-off, while the 137Cs inventory on permeable surfaces decreased dramatically owing to the decontamination activities. Conclusion: These findings suggest that the horizontal wash-off of 137Cs on paved surfaces facilitated the air dose rate decrease in residential areas to a greater extent compared with agricultural fields, in which the air dose rate decreased because of the vertical migration of 137Cs. Results of this study can explain the faster environmental restoration in a residential environment reported by previous studies.

COMPARATIVE ANALYSIS OF STATION BLACKOUT ACCIDENT PROGRESSION IN TYPICAL PWR, BWR, AND PHWR

  • Park, Soo-Yong;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.311-322
    • /
    • 2012
  • Since the crisis at the Fukushima plants, severe accident progression during a station blackout accident in nuclear power plants is recognized as a very important area for accident management and emergency planning. The purpose of this study is to investigate the comparative characteristics of anticipated severe accident progression among the three typical types of nuclear reactors. A station blackout scenario, where all off-site power is lost and the diesel generators fail, is simulated as an initiating event of a severe accident sequence. In this study a comparative analysis was performed for typical pressurized water reactor (PWR), boiling water reactor (BWR), and pressurized heavy water reactor (PHWR). The study includes the summarization of design differences that would impact severe accident progressions, thermal hydraulic/severe accident phenomenological analysis during a station blackout initiated-severe accident; and an investigation of the core damage process, both within the reactor vessel before it fails and in the containment afterwards, and the resultant impact on the containment.

Temporal Change in Radiological Environments on Land after the Fukushima Daiichi Nuclear Power Plant Accident

  • Saito, Kimiaki;Mikami, Satoshi;Andoh, Masaki;Matsuda, Norihiro;Kinase, Sakae;Tsuda, Shuichi;Sato, Tetsuro;Seki, Akiyuki;Sanada, Yukihisa;Wainwright-Murakami, Haruko;Yoshimura, Kazuya;Takemiya, Hiroshi;Takahashi, Junko;Kato, Hiroaki;Onda, Yuichi
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.128-148
    • /
    • 2019
  • Massive environmental monitoring has been conducted continuously since the Fukushima Daiichi Nuclear Power accident in March of 2011 by different monitoring methods that have different features together with migration studies of radiocesium in diverse environments. These results have clarified the characteristics of radiological environments and their temporal change around the Fukushima site. At three months after the accident, multiple radionuclides including radiostrontium and plutonium were detected in many locations; and it was confirmed that radiocesium was most important from the viewpoint of long-term exposure. Radiation levels around the Fukushima site have decreased greatly over time. The decreasing trend was found to change variously according to local conditions. The air dose rates in environments related to human living have decreased faster than expected from radioactive decay by a factor of 2-3 on average; those in pure forest have decreased more closely to physical decay. The main causes of air dose rate reduction were judged to be radioactive decay, movement of radiocesium in vertical and horizontal directions, and decontamination. Land-use categories and human activities have significantly affected the reduction tendency. Difference in the air dose rate reduction trends can be explained qualitatively according to the knowledge obtained in radiocesium migration studies; whereas, the quantitative explanation for individual sites is an important future challenge. The ecological half-lives of air dose rates have been evaluated by several researchers, and a short-term half-life within 1 year was commonly observed in the studies. An empirical model for predicting air dose rate distribution was developed based on statistical analysis of an extensive car-borne survey dataset, which enabled the prediction with confidence intervals. Different types of contamination maps were integrated to better quantify the spatial data. The obtained data were used for extended studies such as for identifying the main reactor that caused the contamination of arbitrary regions and developing standard procedures for environmental measurement and sampling. Annual external exposure doses for residents who intended to return to their homes were estimated as within a few millisieverts. Different forms of environmental data and knowledge have been provided for wide spectrum of people. Diverse aspects of lessons learned from the Fukushima accident, including practical ones, must be passed on to future generations.