• Title/Summary/Keyword: Fukushima Nuclear Plant

Search Result 171, Processing Time 0.029 seconds

Review of Evaluation Method for Nuclear Power Plant Pipings under Beyond Design Basis Earthquake Condition (설계기준초과지진에 대한 원전 배관 평가 방법 검토)

  • Lee, Dae Young;Park, Heung Bae;Kim, Jin Weon;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.56-61
    • /
    • 2016
  • After Japanese Fukushima nuclear power plant accident caused by the beyond design basis earthquake and tsunami, it has turned to be a major challenge for nuclear safety. IAEA, US NRC and EU have provided new safety design standards for beyond design basis event, Domestic regulatory bodies have also enacted guidances for licensees and applicants on additional methods related to beyond design basis events. This paper describes several evaluation methods for applying to nuclear power plants piping for beyond design basis earthquake. As a results, energy method based on the absorbed energy on nuclear power plant, deterministic method following design code and theory, experience method considering past earthquake data and information and probabilistic methods similar to probabilistic risk assessment were reviewed.

A Study on the method of Margin Management for New Nuclear Power Plant (신규원전 여유도 관리 방안 연구)

  • Park, You-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.151-152
    • /
    • 2018
  • In the domestic nuclear power industry, concern about safety of nuclear power plants is continuously increased with the Fukushima nuclear power plant accident. In order to enhance the safety of nuclear power plants, it is important to ensure that the power plants are operating with proper margin within the original design bases. Margin management is the process of ensuring that the NPP designer and operator are aware of the physical and operating limits, and potential and probability of failure, for each component in the plant. All components are subject to margin considerations, but the most important components by scope and attention are those related to safety-related systems and NPP safe shutdown.

  • PDF

Awareness and Eductional Needs Concerning SSI of Korean Pre-service Elementary Teachers Related to Nuclear Power Plant Accident (원전 사고 관련 SSI에 대한 초등 예비교사들의 이해도와 교육 필요성에 대한 인식)

  • Wee, Soo-Meen;Lim, Sung-Man
    • Journal of Science Education
    • /
    • v.37 no.2
    • /
    • pp.294-309
    • /
    • 2013
  • This study addressed the awareness of social issues related to science of future elementary school teachers. Fukushima Nuclear Power Plant Accident was used by concrete issue connected with SSI for this study. Twelve second-year students attending a university of education participated in the study, who were taking a class of science teacher preparation at that time that consists of the content of the elementary science education courses. The study revealed that all the pre-service elementary teachers recognized Fukushima Nuclear Power Plant Accident and received such information through various medias. In particular, they were receiving more information about the Nuclear Power Plant Accident through the internet than any other media by using the internet a lot, and also gained additional information through the internet. However, despite the fact that they recognized Nuclear Power Plant Accident, they neither had much information about it nor had been interested in SSI such as the Nuclear Power Plant Accident. Moreover, they had been basically uneducated about SSI. Despite of having no interest in SSI such as Nuclear Power Plant Accident, the study revealed that the pre-service elementary teachers recognized that scientific problems such as Nuclear Power Plant Accident may affect a society closely. In addition, they together sympathized with the point that SSI education should be applied on the current education courses by identifying the problem in application. As the study revealed above, the application of SSI education to the formal education courses as well as more lively research on that subject is very important and urgent for boosting interest in science subjects and enlightening the nature of science that is one of the objectives of science education.

  • PDF

Numerical analysis on in-core ignition and subsequent flame propagation to containment in OPR1000 under loss of coolant accident

  • Song, Chang Hyun;Bae, Joon Young;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2960-2973
    • /
    • 2022
  • Since Fukushima nuclear power plant (NPP) accident in 2011, the importance of research on various severe accident phenomena has been emphasized. Particularly, detailed analysis of combustion risk is necessary following the containment damage caused by combustion in the Fukushima accident. Many studies have been conducted to evaluate the risk of local hydrogen concentration increases and flame propagation using computational code. In particular, the potential for combustion by local hydrogen concentration in specific areas within the containment has been emphasized. In this study, the process of flame propagation generated inside a reactor core to containment during a loss of coolant accident (LOCA) was analyzed using MELCOR 2.1 code. Later in the LOCA scenario, it was expected that hydrogen combustion occurred inside the reactor core owing to oxygen inflow through the cold leg break area. The main driving force of the oxygen intrusion is the elevated containment pressure due to the molten corium-concrete interaction. The thermal and mechanical loads caused by the flame threaten the integrity of the containment. Additionally, the containment spray system effectiveness in this situation was evaluated because changes in pressure gradient and concentrations of flammable gases greatly affect the overall behavior of ignition and subsequent containment integrity.

Assessment of Temporal Trend of Radiation Dose to the Public Living in the Large Area Contaminated with Radioactive Materials after a Nuclear Power Plant Accident (원전사고 후 광역의 방사성 오염부지 내 거주민에 대한 시간에 따른 피폭방사선량 평가)

  • Go, A Ra;Kim, Min Jun;Cho, Nam Chan;Seol, Jeung Gun;Kim, Kwang Pyo
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • It has been about 5 years since the Fukushima nuclear power plant accident, which contaminated large area with radioactive materials. It is necessary to assess radiation dose to establish evacuation areas and to set decontamination goal for the large contaminated area. In this study, we assessed temporal trend of radiation dose to the public living in the large area contaminated with radioactive materials after the Fukushima nuclear power plant accident. The dose assessment was performed based on Chernobyl model and RESRAD model for two evacuation lift areas, Kawauchi and Naraha. It was reported that deposition densities in the areas were $4.3{\sim}96kBq\;m^{-2}$ for $^{134}Cs$, $1.4{\sim}300kBq\;m^{-2}$ for $^{137}Cs$, respectively. Radiation dose to the residents depended on radioactive cesium concentrations in the soil, ranging $0.11{\sim}2.4mSv\;y^{-1}$ at Kawauchi area and $0.69{\sim}1.1mSv\;y^{-1}$ at Naraha area in July 2014. The difference was less than 5% in radiation doses estimated by two different models. Radiation dose decreased with calendar time and the decreasing slope varied depending on dose assessment models. Based on the Chernobyl dosimetry model, radiation doses decreased with calendar time to about 65% level of the radiation dose in 2014 after 1 year, 11% level after 10 years, and 5.6% level after 30 years. RESRAD dosimetry model more slowly decreased radiation dose with time to about 85% level after 1 year, 40% level after 10 years, and 15% level after 30 years. The decrease of radiation dose can be mainly attributed into radioactive decays and environmental transport of the radioactive cesium. Only environmental transports of radioactive cesium without consideration of radioactive decays decreased radiation dose additionally 43% after 1 year, 72% after 3 years, 80% after 10 years, and 83% after 30 years. Radiation doses estimated with cesium concentration in the soil based on Chernobyl dosimetry model were compared with directly measured radiation doses. The estimated doses well agreed with the measurement data. This study results can be applied to radiation dose assessments at the contaminated area for radiation safety assurance or emergency preparedness.

Development of a human reliability analysis (HRA) guide for qualitative analysis with emphasis on narratives and models for tasks in extreme conditions

  • Kirimoto, Yukihiro;Hirotsu, Yuko;Nonose, Kohei;Sasou, Kunihide
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.376-385
    • /
    • 2021
  • Probabilistic risk assessment (PRA) has improved its elemental technologies used for assessing external events since the Fukushima Daiichi Nuclear Power Station Accident in 2011. HRA needs to be improved for analyzing tasks performed under extreme conditions (e.g., different actors responding to external events or performing operations using portable mitigation equipment). To make these improvements, it is essential to understand plant-specific and scenario-specific conditions that affect human performance. The Nuclear Risk Research Center (NRRC) of the Central Research Institute of Electric Power Industry (CRIEPI) has developed an HRA guide that compiles qualitative analysis methods for collecting plant-specific and scenario-specific conditions that affect human performance into "narratives," reflecting the latest research trends, and models for analysis of tasks under extreme conditions.

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

EVALUATION OF PLANT OPERATIONAL STATES WITH THE CONSIDERATION OF LOOP STRUCTURES UNDER ACCIDENT CONDITIONS

  • MATSUOKA, TAKESHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.157-164
    • /
    • 2015
  • Nuclear power plants have logical loop structures in their system configuration. This paper explains the method to solve a loop structure in reliability analysis. As examples of loop structured systems, the reactor core isolation cooling system and high-pressure core injection system of a boiling water reactor are considered and analyzed under a station blackout accident condition. The analysis results show the important role of loop structures under severe accidents. For the evaluation of the safety of nuclear power plants, it is necessary to accurately evaluate a loop structure's reliability.

Detection Limit of a NaI(Tl) Survey Meter to Measure 131I Accumulation in Thyroid Glands of Children after a Nuclear Power Plant Accident

  • Takahiro Kitajima;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.131-143
    • /
    • 2023
  • Background: This study examined the detection limit of thyroid screening monitoring conducted at the time of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 using a Monte Carlo simulation. Materials and Methods: We calculated the detection limit of a NaI(Tl) survey meter to measure 131I accumulation in the thyroid gland of children. Mathematical phantoms of 1- and 5-year-old children were developed in the simulation of the Particle and Heavy Ion Transport code System code. Contamination of the body surface with eight radionuclides found after the FDNPP accident was assumed to have been deposited on the neck and shoulder area. Results and Discussion: The detection limit was calculated as a function of ambient dose rate. In the case of 40 Bq/cm2 contamination on the body surface of the neck, the present simulations showed that residual thyroid radioactivity corresponding to thyroid dose of 100 mSv can be detected within 21 days after intake at the ambient dose rate of 0.2 µSv/hr and within 11 days in the case of 2.0 µSv/hr. When a time constant of 10 seconds was used at the dose rate of 0.2 µSv/hr, the estimated survey meter output error was 5%. Evaluation of the effect of individual differences in the location of the thyroid gland confirmed that the measured value would decrease by approximately 6% for a height difference of ±1 cm and increase by approximately 65% for a depth of 1 cm. Conclusion: In the event of a nuclear disaster, simple measurements carried out using a NaI(Tl) scintillation survey meter remain effective for assessing 131I intake. However, it should be noted that the presence of short-half-life radioactive materials on the body surface affects the detection limit.

Effect of Typhoons on Contaminants Released from the Southern Sea around Fukushima of Japan (일본 후쿠시마 근해에서 방출된 오염물질에 미치는 태풍의 영향)

  • Hong, Chul-Hoon;Kim, Jinpyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.234-240
    • /
    • 2016
  • We examined the diffusion of contaminants released from the southern coast around Fukushima, Japan, during the passage of typhoons using a three-dimensional numerical model (POM) to track diffusing radioactivity (RA) released from the nuclear power plant at Fukushima following the accident caused by the giant tsunami event in March 2011. Radioactive contaminants released during the passage of typhoons may have significantly affected not only Japanese but also Korean coastal waters. The model domain covered most of the northwestern Pacific including marginal seas such as the East/Japan Sea and the Yellow Sea. Several numerical experiments were conducted case studies focusing on the westward diffusion from the southern coast of Japan of contaminants derived from the source site (Fukushima) according to various attributes of the typhoons, such as intensity, track, etc. The model produced the following results 1) significant amounts of contaminants were transported in a westward direction by easterly winds favorable for generating a coastal air stream along the southern Japanese coast, 2) the contaminants reached as far as Osaka Bay with the passage of typhoons, forced by a 5-day positive sinusoidal form with a (right-) northward track east of Fukushima, and 3) the range of contamination was significant, extending to the interior of the East/Japan Sea around the Tsugaru Strait. The model suggests that contaminants and/or radioactivity released from Fukushima with the passage of typhoons can affect Korean waters including the northeastern East/Japan Sea around the Tsugaru Strait, especially when the typhoon tracks are favorable for generating a westward coastal air stream along the southern Japanese coast.