• 제목/요약/키워드: Fuel cell generation

검색결과 526건 처리시간 0.029초

교류 흐름 방식을 적용한 암모니아 공급 고체산화물 연료전지의 성능 분석 (Performance Analysis of Ammonia-Fed Solid Oxide Fuel Cell Using Alternating Flow)

  • 쿠엔;잡반티엔;이동근;이선엽;배용균;안국영;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.557-565
    • /
    • 2022
  • The effect of flow configuration in ammonia-fed solid oxide fuel cell are investigated by using a three-dimensional numerical model. Typical flow configurations including co-flow and counter-flow are considered. The ammonia is directly fed into the stack without any external reforming process, resulting in an internal decomposition of NH3 in the anode electrode of the stack. The result showed that temperature profile in the case of counter-flow is more uniform than the co-flow configuration. The counter-flow cell, the temperature is highest at the middle of the channel while in the case of co-flow, the temperature is continuously increased and reached maximum value at the outlet area. This leads to a higher averaged current density in counter-flow compared to that of co-flow, about 5%.

미래 국방 무인 이동체를 위한 NaBH4 수소 발생 시스템 기반 연료전지 시스템 설계 및 검증 (Design and Validation of a Fuel Cell System with a NaBH4 Hydrogen Generation System for Future Defense Unmanned Vehicles)

  • 윤성모;김민재;황채민;이태훈;유수상;오택현
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.152-161
    • /
    • 2024
  • In this study, a fuel cell system for future defense unmanned vehicles was designed and validated. A Co/Al2O3-Ni foam catalyst for NaBH4 hydrolysis was characterized using several analytical methods. A NaBH4 hydrogen generation system with the Co/Al2O3-Ni foam catalyst continuously generated hydrogen at elevated reaction temperatures. The fuel cell system with the NaBH4 hydrogen generation system was designed and tested. The performance of the fuel cell system was comparable to that of the fuel cell system using pure hydrogen. Therefore, the fuel cell system with the NaBH4 hydrogen generation system is a suitable power source for future defense unmanned vehicles owing to its easy refueling and simple system.

태양광.연료전지 복합발전 시스템의 DC/DC 컨버터 제어 시뮬레이션 (DC/DC Converter Control for Photovoltaic/Fuel Cell Hybrid Generation system)

  • 박소리;박상훈;원충연;정용채;김영렬
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.353-356
    • /
    • 2008
  • This paper is proposed that the photovoltaic/fuel cell hybrid generation system for the stand-alone system. In case of the photovoltaic generation system, it depends on the weather condition, irradiation and so on... On the contrary, fuel cell has not this limitation. It can be interactive generation system between photovoltaic and fuel cell. This paper simulated stand-alone co-generation system based on the control of DC link. Moreover, 1[kw] BLDC motor system with speed and hysteresis current controller is used for the proposed system.

  • PDF

가스터빈/연료전지 혼합형 고효율 발전시스템 개발 (Development of High Efficiency Gas Turbine/Fuel Cell Hybrid Power Generation System)

  • 김재환;박부민;양수석;이대성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.243-247
    • /
    • 2005
  • This paper describes an on-going national R&D program for the development of a gas turbine/fuel cell hybrid power generation system and related R&D activities. The final goal of this program is to develop a 200kW-c1ass gas turbine/fuel cell hybrid power generation system and achieve high efficiency over $60\%$ (AC/LHV). In the first phase of the development, a sub-scaled 60kW-class hybrid system based on the 50kW-class microturbine and the 5kW SOFC will be developed for the purpose of concept proof of the hybrid system. Core components such as the microturbine and the SOFC system are being developed and parallel preparation for system integration is being carried out. Before the core components are assembled in the final system. operating characteristics of a hybrid system are investigated from a simulated system where a turbocharger (microturbine simulator) and a modified fuel cell burner test facility (fuel cell simulator) are employed. The 60kW demonstration unit will be built up and operated to provide the valuable information for the preparation of the final full scale 200kW hybrid system.

  • PDF

전기화학 반응에 의한 생성 열의 단순화된 처리 기법을 이용한 평판형 고체산화물 연료전지 내부의 이동현상에 대한 전산 해석 (Computational Analysis of Transport Phenomena in a Planar-Type Solid Oxide Fuel Cell with a Simplified Treatment of the Electrochemical Heat Generation)

  • 차훈;손정락;노승탁
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.846-853
    • /
    • 2005
  • For the performance prediction of a planar-type solid oxide fuel cell, the computational analysis of transport phenomena with a simplified treatment of heat generation by the electrochemical reaction is conducted. From the result of the computational analysis, it is shown that the electrochemical reaction is closely related to the transport phenomena inside a solid oxide fuel cell. Transport phenomena including heat and mass transfer influences on the distribution of local current density and, as a result, on the performance characteristics of the fuel cell. Computational analysis is also extended to the parametric study to investigate the performance behavior of the fuel cell with different amount of supplied fuel flow rates. It is also demonstrated that the mathematical formulation and computational procedures proposed in this study can be applied to prove the importance of the specific TPB area in the manufacturing process of electrodes in solid oxide fuel cells.

대용량 연료전지시스템의 계통외란 방지알고리즘에 관한 연구 (A Study on the Countermeasure Algorithm for Power System Disturbances in Large Scale Fuel Cell Generation System)

  • 최성식;김병기;박재범;노대석
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.711-717
    • /
    • 2016
  • Recently, fuel cell generation system with high energy efficiency and low CO2 emission is energetically interconnected with distribution power system. Especially, MCFC(molten carbonate fuel cell) operating at high temperature conditions is commercialized and installed as a form of large scale power generation system. However, it is reported that power system disturbances such as harmonic distortion, surge phenomenon, unbalance current, EMI(Electromagnetic Interference), EMC (Electromagnetic Compatibility) and so on, have caused several problems including malfunction of protection device and damage of control devices in the large scale FCGS(Fuel Cell Generation System). Under these circumstances, this paper proposes countermeasure algorithms to prevent power system disturbances based on the modelling of PSCAD/EMTDC and P-SIM software. From the simulation results, it is confirmed that proposed algorithms are useful method for the stable operation of a large scale FCGS.

OXYGEN CONCENTRATION IN THE CATHODE CHANNEL OF PEM FUEL CELL USING GAS CHROMATOGRAPH

  • Ha, T.H.;Kim, H.S.;Min, K.D.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.119-126
    • /
    • 2007
  • Because of the low temperature operation, proton exchange membrane (PEM) fuel cell has a water phase transition. Therefore, water management is an important operation issue in a PEM fuel cell because the liquid water in the fuel cell causes electrode flooding that can lower the cell performance under high current density conditions. In this study, in order to understand the reactant distributions in the cathode channels of the PEM fuel cell, an experimental technique that can measure the species concentrations of reactant gases by using gas chromatograph (GC) is applied for an operating PEM fuel cell. The oxygen distribution along the cathode flow channels of PEM fuel cell is mainly investigated with various operating conditions. Also, the relations between cathode flooding and oxygen concentrations and oxygen consumption pattern along the cathode channel configurations of the unit cell adopted for this study are discussed using GC measurement and visualization experiment of cathode flooding. It is found that the amount of oxygen consumption is very sensitive to various operating conditions of the fuel cell and was much affected by the flooding occurrence in cathode channels.

규제가 없는 전력계통에서 대체분산전원으로서의 연료전지 (Fuel Cell as an Alternative Distributed Generation Source under Deregulated Power Systems)

  • 이광연;김세호;김일환;김호찬
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권12호
    • /
    • pp.561-569
    • /
    • 2006
  • Because of the trend of deregulation, power industry is going through an unprecedented transformation in North America and Europe, and there are a host of acquisitions and mergers by the private sector to position themselves to take advantage of new business opportunities. Deregulation has accelerated the development of smaller generators and fuel cells will gradually become more attractive to mainstream electricity users as they improve in capability and decrease in cost. Fuel Cell technology is surveyed and the potential of using fuel cell as a distributed generation source is presented. This paper recommends the fuel cell power plants as alternative energy sources for distributed generation in Jeju Island, Korea. This will help in increasing fuel efficiency, at least double the current thermal plants', increasing the reliability of power supply, reducing the dependency on the HVDC link, providing quality power to the growing infrastructure, and maintaining clean air in meeting the free-trade international island.

능동 클램프 전류형 하프 브리지 컨버터를 적용한 연료전지 발전시스템 (Fuel Cell Generation Systems with Active Clamp Current fed Half Bridge Converter)

  • 장수진;김진태;이태원;이병국;원충연
    • 전력전자학회논문지
    • /
    • 제10권1호
    • /
    • pp.78-86
    • /
    • 2005
  • 최근 들어, 저전압·대전류 출력 특성을 갖는 연료전지를 위한 새로운 발전시스템이 주목받고 있다. 연료전지 발전시스템에서는 dc-dc 승압용 컨버터와 dc-ac 인버터가 필요하다. 그러므로 본 논문에서는 연료전지 발전시스템을 위한 ZVS 동작을 가진 dc-dc 능동 클램프 전류형 하프 브리지 컨버터를 제안하였다. 제안된 컨버터는 일반적인 dc-dc 컨버터에 비해 높은 효율과 높은 소자 이용율을 가진다. 연료전지 발전시스템은 연료전지(PEMFC)의 낮은 전압(28∼43[Vdc])을 380[Vdc]로 승압하기 위한 능동 클램프 전류형 하프 브리지 컨버터로 구성하였다. 단상 풀 브리지 인버터는 220[Vac], 60[Hz] 교류 출력을 얻기 위해 적용하였다.

암모니아 공급 고체산화물 연료전지의 1D 반응 모델 (1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell)

  • 잡반티엔;쿠엔;안국영;배용균;이선엽;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.723-732
    • /
    • 2022
  • Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.