• 제목/요약/키워드: Fuel Rail

검색결과 282건 처리시간 0.027초

가스제트 분무 모델을 이용한 다양한 분사 패턴의 디젤 분무에 대한 CFD 및 0-D 시뮬레이션 비교 연구 (A Comparative Study Between CFD and 0-D Simulation of Diesel Sprays with Several Fuel Injection Patterns Using Gas Jet Spray Model)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.77-85
    • /
    • 2012
  • The CFD simulation of diesel spray tip penetrations were compared with 0-D simulation for experimental data obtained with common rail injection system. The simulated four injection patterns include single, pilot and split injections. The CFD simulation of the spray penetration over these injection patterns was performed using the KIVA-3V code, which was implemented with both the standard KIVA spray and original gas jet sub-models. 0-D simulation of the spray tip penetration with time-varying injection profiles was formulated based on the effective injection velocity concept as an extension of steady gas jet theory. Both the CFD simulation of the spray tip penetration with the standard KIVA spray model and 0-D simulation matched better with the experimental data than the results of the gas jet model for the entire fuel injection patterns.

A Study on the Behavior Characteristics of Diesel Spray by Using a High Pressure Injection System with Common Rail Apparatus

  • Yeom, Jeong-Kuk;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1371-1379
    • /
    • 2003
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 22 MPa to 112 MPa using a high pressure injection system (ECD-U2). Also, we conducted simulation study by modified KIVA-II code. The results of simulation study are compared with experimental results. The images of liquid and vapor phase for free spray were simultaneously taken by exciplex fluorescence method. As experimental results, the vapor concentration of injected fuel is leaner due to the increase of atomization in the case of the high injection pressure than in that of the low injection pressure. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.

예연소실식 디젤엔진의 분구 형상 변화에 따른 연소 특성 연구 (Study on Combustion Characteristics of Pre-combustion Chamber Type Diesel Engine with Different Throat Shape)

  • 최종휘;이승필;박성욱
    • 한국분무공학회지
    • /
    • 제22권3호
    • /
    • pp.116-121
    • /
    • 2017
  • Pre-combustion chamber type indirect diesel engines have different combustion characteristics compared with those of common rail direct injection engine. The CONVERGE, specific engine CFD program, was used to simulate hollow cone spray model and combustion. The air-fuel mixture flow propagating from pre-combustion chamber to cylinder was concentrated at top half and center of the pre-combustion chamber throat. Stronger mixture flow was formed at smaller and longer throat cases. As a result, thermal efficiency and fuel consumption were improved for modified throat shape and the soot emission was also reduced.

커먼레일 인젝터로부터 분사되는 디젤 분무의 연소실 압축비 변화에 따른 SMD 분포의 CFD 시뮬레이션 (CFD Simulation of SMD Distribution of Diesel Sprays Injected from a Common Rail Injector According to Compression Ratio of Combustion Chamber)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.123-129
    • /
    • 2014
  • A diesel spray overall SMD (Sauter mean diameter) in a spray chamber was simulated with CFD by varying the compression ratio in the spray chamber from 18:1 to 100:1. The gas densities of the spray chambers for the compression ratios of 18:1 and 100:1 were 17.97 and $74.8kg/m^3$, respectively. Standard KIVA-3V code was used for the CFD simulation. Various fuel injection patterns such as single injection, pilot injection and split injection were used for the CFD simulation. Fuel injection pressures for the simulated diesel sprays are 90 and 120 MPa. As the compression ratio increases, the CFD simulated SMD was decreased, which was generally in agreement with previous experimental studies.

고압 연료 제어와 분사 특성 (A High Pressure Fuel Control and its Injection Characteristics)

  • 김상호;이용규;김재업;김응서
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.123-133
    • /
    • 1995
  • An injection control valve(ICV) was designed to control the fuel flow between a common rail and an injector with two commercial solenoids. To improve the performance of ICV, the characteristic method was applied. With this method, the flow characteristics in the ICV and the injector were studied and the parameters which affect the injection characteristics were also studied. From this study, following results were obtained. The injection duration can be controlled and with modifications of the effective valve stroke of ICV, the injection quantity and duration can be reduced to desired amount. Also the injection quantity and pressure can be controlled by reducing the hole size of the injector without the variation of the injection duration. For some conditions, the desired injection characteristics can be obtained by the changes of the valve timing, the effective valve stroke, the open pressure of the injector and the hole size of the injector.

  • PDF

The Experimental Study on the Low-temperature Combustion Characteristics of DME Fuel in a Compression Ignition Engine

  • Yoon, Seung Hyun
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.190-196
    • /
    • 2017
  • The aim of this work is to investigate the combustion and exhaust emission characteristics of low-temperature combustion (LTC) at various EGR test conditions using a single cylinder common-rail diesel engine. In high EGR rate combustion mode with DME fuel, 30% (${\Phi}=0.61$) and 50% (${\Phi}=0.86$) of EGR were respectively examined, and then the combustion, exhaust emissions, nano-particle characteristics of each cases were measured. From these results, it revealed that The ignition delay and combustion duration are prolonged as the increase of EGR rate. In addition, at an advanced injection timing (BTDC $30^{\circ}$), ignition delays were fairly increased because the dilution effect of EGR and also low charge in-cylinder temperature created a lean mixture, thus decreased the peak release rate.

디젤엔진에서 노즐 홀 형상효과의 실험적 연구 (Experimental Study of the Effects of Nozzle Hole Geometry for di Diesel Engine)

  • 구건우;이영진;김인수;이충원
    • 한국분무공학회지
    • /
    • 제12권3호
    • /
    • pp.154-159
    • /
    • 2007
  • Spray tip penetration and spray angle for one main injection were measured at the atmospheric condition with the fuel injection pressure of 270 bar and 540 bar. It investigates an effect of different nozzle hole geometry of conventional cylindrical one and those of elliptical ones. Injection period represented by injector pulse drive was fixed at 1ms. From the result of this study, it is shown that spray tip penetration becomes shorter and spray angle becomes wider with the elliptical nozzle hole geometry due to fast break-up of a fuel liquid column.

  • PDF

수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향 (Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition)

  • 전지연;박현욱;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

상단 아치 형상 중실 오스테나이트계 스테인리스강의 2단 인발 공정 최적화 (Optimization of Two-Step Cold Drawing for Upper Arch-Shape Solid Type Austenitic Stainless Steel)

  • 배성준;김정훈;홍성박;홍성규;남궁정;이광석
    • 소성∙가공
    • /
    • 제31권6호
    • /
    • pp.394-403
    • /
    • 2022
  • In the automotive industry, cold-drawn austenitic stainless steel is commonly used to handle high fuel pressures in gasoline direct injection (GDI) engines. In this study, we analyzed the effects of main process variables such as cross-sectional shape, drawing speed and friction coefficient on the microstructure, hardness and residual stress of the drawn material in the two-step cold drawing process. By changing the cross-sectional shape in the first-step cold drawing, the possibility of improving the shape accuracy or physical properties of the finally cold-drawn fuel rail pressure sensor product was investigated.

압축착화기관에서 DME-바이오디젤 혼합연료의 분무 및 배기 특성에 관한 연구 (Study on Spray and Exhaust Emission Characteristics of DME-Biodiesel Blended Fuel in Compression Ignition Engine)

  • 차준표;박수한;이창식;박성욱
    • 대한기계학회논문집B
    • /
    • 제35권1호
    • /
    • pp.67-73
    • /
    • 2011
  • 본 연구는 DME-바이오디젤 혼합연료의 분무 및 연소, 배기 특성을 바이오디젤과 비교한 실험적 연구이며 실험연료는 바이오디젤 (BD100)과 중량 기준으로 DME를 20% 혼합한 DME-바이오디젤 혼합연료 (B-DME20)이다. 거시적 분무 특성을 연구하기 위하여 분무 이미지로부터 분무도달거리, 분무각을 측정하였으며, 연소 및 배기 특성은 단기통 직접 분사식 압축착화 기관을 이용하여 분석하였다. 실험결과 바이오디젤과 DME-바이오디젤 혼합연료는 분사율에서는 큰 차이가 없었지만 혼합연료의 경우에 착화지연기간이 짧고 연소압력이 높았으며soot 배출물이 현저하게 줄어들었다.