• Title/Summary/Keyword: Fuel Cycle Costs

Search Result 53, Processing Time 0.024 seconds

Calculating the Unit Cost Factors for Decommissioning Cost Estimation of the Nuclear Research Reactor (연구용원자로 해체비용 산정을 위한 단위비용인자 산출)

  • Jeong, Kwan-Seong;Lee, Dong-Gyu;Jung, Chong-Hun;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.385-391
    • /
    • 2006
  • The estimated decommissioning cost of nuclear research reactor is calculated by applying a unit cost factor-based engineering cost calculation method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning cost of nuclear research reactor is composed of labor cost, equipment and materials cost. Labor cost of decommissioning costs in decommissioning works are calculated on the basis of working time consumed in decommissioning objects. In this paper, the unit cost factors and work difficulty factors which are needed to calculate the labor cost in estimating decommissioning cost of nuclear research reactor are derived and figured out.

  • PDF

A Suggestion of Contingency Guidelines According to ISDC Based on Overseas Contingency Data

  • Minhee Kim;Chang-Lak Kim;Sanghwa Shin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.541-550
    • /
    • 2022
  • When decommissioning nuclear power plant (NPP), the first task performed is cost estimation. This is an important task in terms of securing adequate decommissioning funds and managing the schedule. Therefore, many countries and institutions are conducting continuous research and also developing and using many programs for cost estimation. However, the cost estimated for decommissioning an NPP typically differs from the actual cost incurred in its decommissioning. This is caused by insufficient experience in decommissioning NPPs or lack of decommissioning cost data. This uncertainty in cost estimation can be in general compensated for by applying a contingency. However, reflecting an appropriate standard for the contingency is also difficult. Therefore, in this study, data analysis was conducted based on the contingency guideline suggested by each institution and the actual cost of decommissioning the NPP. Subsequently, TLG Service, Inc.'s process, which recently suggested specific decommissioning costs, was matched with ISDC (International Structure for Decommissioning Costing)'s work breakdown structure (WBS). Based on the matching result, the guideline for applying the contingency for ISDC's WBS Level 1 were presented. This study will be helpful in cost estimation by applying appropriate contingency guidelines in countries or institutions that have no experience in decommissioning NPPs.

Verification Experiment and Analysis for 6kW Solar Water Heating System (Part 4 : Comparing Economics and Raising Competitiveness) (6kW급 태양열 온수급탕 시스템의 실증실험 및 분석 (제4보 경제성비교 및 경쟁력강화))

  • Lee Bong Jin;Kang Chaedong;Lee Sang Ryoul;Hong Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.232-242
    • /
    • 2005
  • It has been recognized that solar water heating systems are economically inferior to conventional gas water-heaters and boilers using light oil as fuel in spite of having practical possibilities among other alternative energy facilities in Korea. The solar system, however, should be revaluated due to the sharp rise of oil prices recently. We have calculated the energy amount and cost through a series of research projects for the system by experiment and simulation, which lead to analyzing reliable life cycle costs. For the economic analysis, the gas water-heater and light oil boiler were taken as base cases while the solar systems implemented with these facilities were compared as alternatives. As a result, the solar system using the light oil as an auxiliary fuel surpassed the light oil boiler in economics. And a $50\%$ government subsidy for the initial cost is needed to maintain competitiveness with the gas hot-water heater. With this support, the simple payback period of the system can approach 12.8 years under $20\%$ additional curtailment of expenditure.

Analysis of Gas Emissions and Power Generation for Co-firing Ratios of NG, NH3, and H2 Based on NGCC (NGCC 기반 천연가스, 암모니아, 수소 혼소 발전 비율에 따른 CO2와 NOx 배출량 및 전력 생산량 분석)

  • Inhye Kim;Jeongjae Oh;Taesung Kim;Minsuk Im;Sunghyun Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.225-232
    • /
    • 2024
  • The reduction of CO2 emissions in the energy production sector, which accounts for 86.8% of total greenhouse gas emissions, is important to achieve carbon-neutrality. At present, 60% of total power generation in South Korea is coal and natural gas. Replacing fossil fuel with renewable energy such as wind and solar has disadvantages of unstable energy supply and high costs. Therefore, this study was conducted through the co-firing of natural gas, ammonia and hydrogen utilizing the natural gas combined cycle process. The results demonstrated reduction in CO2 emissions and 34%~238% of the power production compared to using only natural gas. Case studies on mass fractions of natural gas, ammonia and hydrogen indicated that power production and NOx emissions were inversely proportional to the ammonia ratio and directly proportional to the hydrogen ratio. This study provides guidelines for the use of various fuel mixtures and economic analysis in co-firing power generation.

A Pre-Study on the Estimation of NPP Decommissioning Radioactive Waste and Disposal costs for Applying New Classification Criteria (신 분류기준을 적용하기 위한 원전 해체폐기물량 및 처분 비용 산정에 대한 사전 연구)

  • Song, Jong Soon;Kim, Young-Guk;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • Since the commercial operation of Kori Unit #1 nuclear power plant(NPP) started in 1978, 23 units at present are operating in Korea. Radioactive wastes will be steadily generated from these units and accumulated. In addition, the life-extension of NPPs, construction of new NPPs and decontamination and decommissioning research facilities will cause radioactive wastes to increase. Recently, Korea has revised the new classification criteria as was proposed by IAEA. According to the revised classification criteria, low-level, very-low-level and exempt waste are estimated to about 98% of total disposal amount. In this paper, current status of overseas cases and disposal method with new classification criteria are analyzed to propose the most reasonable method for estimating the amount of decommissioning waste when applying the new criteria.

A Framework of Decommissioning Cost Estimation for Nuclear Research Facilities (원자력연구시설 해체비용 산정 구조)

  • Jeong Kwan-Seong;Lee Dong-Gyu;Lee Kune-Woo;Oh Won-Zin;Jung Chong-Hun;Park Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.171-178
    • /
    • 2006
  • Decommissioning cost estimation is a very important technique in designing and planning of nuclear facilities' decommissioning. Decommissioning cost estimation should be made according to the phases of decommissioning activities and installed components of nuclear facilities. In this paper, the basic framework necessary for decommissioning cost estimation is completed so that it could be used as a technique for decommissioning costs estimation by specifying cost items and group components and unit cost factors on which work time is calculated. Also, factors to be considered for decommissioning cost estimation of major activities and tasks are reviewed. Afterwards, these techniques will be utilized as a basic technology to establish methodology of decommissioning cost estimation and evaluation.

  • PDF

Canadian Public and Stakeholder Engagement Approach to a Spent Nuclear Fuel Management (사용후핵연료 관리를 위한 캐나다 공론화 방안)

  • Hwang, Yong-Soo;Kim, Youn-Ok;Whang, Joo-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.179-187
    • /
    • 2008
  • After Canada has struggled with a radioactive waste problem over for 20 years, the Canadian government finally found out that its approach by far has been lack of social acceptance, and needed a program such as public and stakeholder engagement (PSE) which involves the public in decision-making process. Therefore, the government made a special law, called Nuclear Fuel Waste Act (NFWA), to search for an appropriate nuclear waste management approach. NFWA laid out three possible approaches which were already prepared in advance by a nuclear expert group, and required Nuclear Waste Management Organization (NWMO) to be established to report a recommendation as to which of the proposed approaches should be adopted. However, NFWA allowed NWMO to consider additional management approach if the other three were not acceptable enough. Thus, NWMO studied and created a fourth management approach after it had undertaken an comparison of the benefits, risks and costs of each management approach: Adaptive Phased Management. This approach was intended to enable the implementers to accept any technological advancement or changes even in the middle of the implementation of the plan. The Canadian PSE case well shows that technological R&D are deeply connected with social acceptance. Even though the developments and technological advancement are carried out by the scientists and experts, but it is important to collect the public opinion by involving them to the decision-making process in order to achieve objective validity on the R&D programs. Moreover, in an effort to ensure the principles such as fairness, public health and safety, security, and adoptability, NWMO tried to make those abstract ideas more specific and help the public understand the meaning of each concept more in detail. Also, they utilized a variety of communication methods from face-to-face meeting to e-dialogue to encourage people to participate in the program as much as possible. Given the fact that Korea has been also having a hard time in dealing with spent nuclear fuel management, all of these efforts that Canada has made with a PSE program would give good lessons and implications to the Korean case. In conclusion, as a deliberative participation program, PSE could be a possible breakthrough approach for the Korean spent nuclear fuel management.

  • PDF

Analysis of Environmental Impacts for the Biochar Production and Soil Application (폐목재를 이용한 바이오차 생산 및 토양적용의 환경평가)

  • Kim, Mihyung;Kim, Geonha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.461-468
    • /
    • 2014
  • Biochar is a carbon rich solid produced by the pyrolysis of biomass such as energy crops, forestry residues, and wood wastes. Biochar returned to soil is to mitigate climate change and the feedstock of wood wastes reduces fossil fuel consumption as well as disposal costs. This study was practiced to evaluate a biochar system by gasification in terms of global warming regarding the soil application of the produced biochar. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was 1 tonne of wood wastes. The result shows that the biochar system by using wood wastes as feedstock produces 4.048E-01 $kgCO_2-eq$ from the pre-treatment process as chipping and drying, 4.579E-01 $kgCO_2-eq$ from the pyrolysis process, and 9.070E-02 $kgCO_2-eq$ from the spreading to agricultural land, therefore total 9.534E-01 $kgCO_2-eq$ are generated. About 252 kg of $CO_2$ is still stored in the produced biochar in soil after carbon offsetting of the system. Therefore, the net carbon of the system is -251 kg of $CO_2-eq$.

A Study on Ventilation System of Underground Low-Intermediate Radioactive Waste Repository (지하 동굴식 중-저준위 방사성 폐기물 처분장의 환기시스템 고찰)

  • Kim, Young-Min;Kwon, O-Sang;Yoon, Chan-Hoon;Kwon, Sang-Ki;Kim, Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.65-78
    • /
    • 2007
  • The pollutants (Rn, CH, CO, HS, radioactive gas from radiolysis) were generated from the process of construction and operation of underground repository, and after disposal of low-intermediate radioactive waste inside there must be controlled by a ventilation system to distribute them in area where enough air is supported. Therefore, a suitable technical approach is needed especially at an underground repository that is equipped with many entry tunnels, storage tunnels, exhaust-blowing tunnels, and vertical shafts in complicated network form. For the technical approach of such a ventilation system, WIPP (Waste Isolation Pilot Plant) in U. S and SFR (Slutforvar for Reaktorafall) low-intermediate radioactive waste repository in Sweden were selected as the models, for calculating the required air quantity, organizing a ventilation network considering cross section, length, surface roughness of the air passage, and describing a calculation of resistance of each circuit. Based on these procedures, a best suited ventilation system was completed with designing proper capacity of fans and operating plan of vertical shafts. As a result of comparing the two repositories based on the geometry dimensions and ventilation facility equipment operation, more parallel circuit as in WIPP, brought decrease in resistance for entire system leading to reduce of operating costs, and the larger cross-sectional area of the SFR, the greater the percentage of disposal capacity. Accordingly, the mixture of parallel circuit of WIPP repository for reducing resistance and SFR repository formation for enlargement of disposal capacity would be the most rational and efficient ventilation system.

  • PDF

Study on the Institutional Control Period Through the Post-drilling Scenario Of Near Surface Disposal Facility for Low and Intermediate-Level Radioactive Waste (중·저준위 방사성폐기물 천층처분시설에서 시추 후 거주시나리오 평가를 통한 폐쇄 후 제도적 관리기간 연구)

  • Hong, Sung-Wook;Park, Jin-Baek;Yoon, Jung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.59-68
    • /
    • 2014
  • The public's access to the disposal facilities should be restricted during the institutional control period. Even after the institutional control period, disposal facilities should be designed to protect radiologically against inadvertent human intruders. This study is to assess the effective dose equivalent to the inadvertent intruder after the institutional control period thorough the GENII. The disposal unit was allocated with different kind of radioactive waste and the effects of the radiation dose to inadvertent intruder were evaluated in accordance with the institutional control period. As a result, even though there is no institutional control period, all were satisfied with the regulatory guide, except for the disposal unit with only spent filter. However, the disposal unit with only spent filter was satisfied with the regulatory guide after the institutional control period of 300 years. But the disposal unit with spent filter mixed with dry active waste could shorten the institutional control period. So the institutional control period can be reduced through the mixing the other waste with spent filter in disposal unit. Therefore, establishing an appropriate plan for the disposal unit with spent filter and other radioactive waste will be effective for radiological safety and reduction of the institutional control period, rather than increasing the institutional control period and spending costs for the maintenance and conservation for the disposal unit with only spent filter.