• Title/Summary/Keyword: Fuel Cell Temperature

Search Result 933, Processing Time 0.029 seconds

Analysis of Dynamic Performance of Solid Oxide Fuel Cells (고체산화물 연료전지의 동적 성능 특성 해석)

  • Yang, Jin-Sik;Sohn, Jeong-L.;Ro, Sung-Tack
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1652-1657
    • /
    • 2004
  • Model for the dynamic simulation of dynamic behaviors of a solid oxide fuel cell (SOFC) is provided. This model is based upon (1) coupled mass and heat transfer characteristics and (2) important chemical reactions such as electrochemical and reforming reaction in high temperature fuel cells such as SOFC. It is found that the thermal inertia of solid materials in SOFC plays an important role to the dynamic behavior of cell temperature. Dynamic characteristics of cell voltage, power and chemical compositions with different levels of load changes are investigated.

  • PDF

A Study on the Dynamic Performance Behavior of Solid Oxide Fuel Cells with Stepwise Load Changes (갑작스런 부하 변동에 따른 고체산화물 연료전지의 동적 성능 거동 특성에 관한 연구)

  • Sohn Jeong Lak;Ro Sung Tack;Yang Jin Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.477-484
    • /
    • 2005
  • Model fer the dynamic simulation of dynamic behaviors of a solid oxide fuel cell (SOFC) is provided. This model is based upon (1) coupled mass and heat transfer characteristics and (2) important chemical reactions such as electrochemical and reforming reactions in high temperature fuel cells such as SOFC. It is found that the thermal inertia of solid materials in SOFC plays an important role to the dynamic behavior of cell temperature. Dynamic characteristics of cell voltage, power, and chemical compositions with different levels of load change are investigated.

Integrated Power Generation Systems Based on High Temperature Fuel Cells - A Review of Research and Development Status - (고온형 연료전지 기반 통합형 발전시스템 - 연구개발 동향 고찰 -)

  • Kim, Tong-Seop;Park, Sung-Ku
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.299-310
    • /
    • 2009
  • Fuel cells are expected to be promising future power sources in both aspects of thermal efficiency and environmental friendliness. Accordingly, worldwide research and development efforts have been enormously increasing recently in various applications such as power plants, transportation and portable power sources. Among others, high temperature fuel cells, such as solid oxide fuel cells and molten carbonate fuel cells, are suitable for electric power plants. Moreover, their high operating temperature is quite appropriate to construct further advanced integrated systems. This paper reviews recent literatures on research and development of integrated power generation systems based on high temperature fuel cells. Research and development efforts are summarized in the area of fuel cell/ gas turbine hybrid systems, application of carbon capture technology to fuel cell systems, integration of coal gasification with fuel cells, and the use of alternative fuels.

Thermal Stress Analysis of a Fuel Cell Stack using an Orthotropic Material Model (복합재료 연료전지 스택의 열응력 해석)

  • Jeon Ji Hoon;Hwang Woonbong;Um Sukkee;Kim Soowhan;Lim Tae Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.206-209
    • /
    • 2004
  • Mechanical behavior of a fuel stack was studied using an orthotropic material model. The fuel stack is essentially composed of a bipolar plate (BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is important to maintain a suitable contact pressure distribution of BP, because it influences the power efficiency of the fuel cell stack. When it is exposed to high temperature, its behavior must be stable. Hence, we performed stress analysis at high temperature as well as at room temperature. At high temperature, the contact pressure distribution becomes poor. Many patents have shown that using an elastomer can overcome this phenomena. Its effect was also studied. By using an elastomer, we found a good contact pressure distribution at high temperature as well as at room temperature.

  • PDF

Synthesis and Characterization of H3PO4 Doped Poly(benzimidazole-co-benzoxazole) Membranes for High Temperature Polymer Electrolyte Fuel Cells

  • Lee, Hye-Jin;Lee, Dong-Hoon;Henkensmeier, Dirk;Jang, Jong-Hyun;Cho, Eun-Ae;Kim, Hyoung-Juhn;Kim, Hwa-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3279-3284
    • /
    • 2012
  • Poly(benzimidazole-co-benzoxazole)s (PBI-co-PBO) are synthesized by polycondensation reaction with 3,3'-diaminobenzidine, terephthalic acid and 3,3'-dihydroxybenzidine or 4,6-diaminoresorcinol in polyphosphoric acid (PPA). All polymer membranes are prepared by the direct casting method (in-situ fabrication). The introduction of benzoxazole units (BO units) into a polymer backbone lowers the basic property and $H_3PO_4$ doping level of the copolymer membranes, resulting in the improvement of mechanical strength. The proton conductivity of $H_3PO_4$ doped PBI-co-PBO membranes decrease as a result of adding amounts of BO units. The maximum tensile strength reaches 4.1 MPa with a 10% molar ratio of BO units in the copolymer. As a result, the $H_3PO_4$ doped PBI-co-PBO membranes could be utilized as alternative proton exchange membranes in high temperature polymer electrolyte fuel cells.

The Crack Behavior in the Planar Solid Oxide Fuel Cell under the Fabricating and Operating Temperature (제조 및 작동온도에서 평판형 고체연료전지에 발생한 균열 거동)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.34-41
    • /
    • 2014
  • The goal of this study is to investigate some crack behaviors which affect the crack propagation angle at the planar solid oxide fuel cell with cracks under the fabricating and operating temperature and analyze the stresses by 3 steps processing on the solid oxide fuel cell. Currently, there are lots of researches of the performance improvement for fuel cells, and also for the more powerful efficiency. However, the planar solid oxide fuel cell has demerits which the electrode materials have much brittle properties and the thermal condition during the operating process. It brings some problems which have lower reliability owing to the deformation and cracks from the thermal expansion differences between the electrolyte, cathode and anode electrodes. Especially the crack in the corner of the electrodes gives rise to the fracture and deterioration of the fuel cells. Thus it is important to evaluate the behavior of the cracks in the solid oxide fuel cell for the performance and safety operation. From the results, we showed the stress distributions from the cathode to the anode and the effects of the edge crack in the electrolyte and the slant crack in the anode. Futhermore the crack propagation angle was expected according to the crack length and slant angle and the variation of the stress intensity factors for the each fracture mode was shown.

An Experimental Study on Transient Characteristics of PEM Fuel Cell Stack (PEM 연료전지 스택의 과도상태 출력특성에 관한 실험적 연구)

  • Kim, Hyun-il;Hwang, Jae-Soon;Chung, Tae-Yong;Shin, Dong-Hoon;Nam, Jin-Hyun;Kim, Young-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2003-2008
    • /
    • 2007
  • The transient power characteristics of a PEM fuel cell stack was experimentally studied using a commercial 1.2kW PEM fuel cell ($Nexa^{TM}$ Power Module, Ballard Power System Inc.). The conditions in PEM fuel cell stack such as temperature and water content change rather slowly because of their large heat capacity and long channel length, which results in long transient time to converge to a steady state. The steady characteristics of the PEM fuel cell module was determined first, followed by the measurement of its transient characteristics upon stepwise and continuous load current changes. During the stepwise current change from 5A to 25A, the output voltage initially decreased below the steady voltage and then increased gradually. Similar behavior was also observed for the stepwise current change from 25A to 5A. This transient behavior is explained with reference to the evolution of the temperature and water content of the PEM fuel cell stack.

  • PDF

Performance Characterization of Polymer Electrolyte Membrane Direct Methanol Fuel Cell on the Various Operation Conditions (운전조건에 따른 고분자 직접메탄올 연료전지 성능 특성)

  • Jung, Doo-Hwan;Lee, Chang-Hyeong;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1409-1411
    • /
    • 1996
  • Direct Methanol Fuel Cell(DMFC) using Pt-Ru electrocatlayst and Nafion menbrane can provide high performance if operating conditions are well designed. In this study, operating temperature, pressure, and fuel flow rate were changed to obtain optimum operating conditions of DHFC single cell. Performance of DMFC were increased by the increase of operating temperature. The concentration of fuel methanol was 2.0M $CH_{3}OH$ and pressure difference of cathode and anode was 2 atm were showed maximum performance of DMFC single cell with showing the current density of 160 $mA/cm^2$ at 0.2V cell voltage.

  • PDF

1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell (암모니아 공급 고체산화물 연료전지의 1D 반응 모델)

  • VAN-TIEN GIAP;THAI-QUYEN QUACH;KOOK YOUNG AHN;YONGGYUN BAE;SUNYOUP LEE;YOUNG SANG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.723-732
    • /
    • 2022
  • Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.

Characterization of Sulfonated Ploy(aryl ether sulfone) Membranes Impregnated with Sulfated $ZrO_2$ (Sulfated $ZrO_2$를 함침한 SPAES 연료전지막의 특성 평가)

  • Kim, Mi-Nai;Choi, Young-Woo;Kim, Tae-Young;Lee, Mi-Soon;Kim, Chang-Soo;Yang, Tae-Hyun;Nam, Ki-Seok
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Composite membranes based on sulfonated poly(aryl ether) sulfone (SPAES) with different sulfated zirconia nanoparticles ($s-ZrO_2$) ratio are synthesized and investigated for the improvement of the hydration and the proton conductivity at high temperature and no humidification for fuel cell applications. X-ray diffraction technique is employed to characterize the structure and the size of $s-ZrO_2$ nanoparticles. The sulfation effect of $s-ZrO_2$ nanoparticles is verified by FT-IR analysis. The properties of the SPAES composite membranes with the various $s-ZrO_2$ ratio are evaluated by ion exchange capacity and water content. The proton conductivities of the composite membranes are estimated at room temperature with full hydration and at the various high temperature without external humidification. The composite membrane with 5 wt% $s-ZrO_2$ shows the highest proton conductivity. The proton conductivities are $0.9292\;S\;cm^{-1}$ at room temperature with full hydration and $0.0018\;S\;cm^{-1}$ at $120^{\circ}C$ without external humidification, respectively.