• Title/Summary/Keyword: Fuel Cell Temperature

Search Result 933, Processing Time 0.026 seconds

Analysis of Thermal Effect by Coolant Plate Number in High-Temperature Polymer Electrolyte Membrane Fuel Cell Stack (고온형 고분자 전해질 연료전지 스택 내부의 냉각판 수가 스택에 미치는 열 영향성의 수치적 연구)

  • Choi, Byung Wook;Ju, Hyun Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.127-135
    • /
    • 2015
  • High-Temperautre Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) with phosphoric acid-doped polybenzimidazole (PBI) membrane has high power density because of high operating temperature from 100 to $200^{\circ}C$. In fuel cell stack, heat is generated by electrochemical reaction and high operating temperature makes a lot of heat. This heat is caouse of durability and performance decrease about stack. For these reasons, heat management is important in HT-PEMFC. So, we developed HT-PEMFC model and study heat flow in HT-PEMFC stack. In this study, we placed coolant plate number per cell number ratio as variable and analysed heat flow distribution in stack.

Analysis on the Fuel Cell Performance by the Impedance Method (임피던스법을 적용한 연료전지의 성능평가)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.918-923
    • /
    • 2007
  • Fuel cell is a modular, high efficient and environmentally energy conversion device, it has become a promising option to replace the conventional fossil fuel based electric power plants. The high temperature fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. Corrosions in molten electrolytes and the electric conductivity across the oxide scale have crucial characteristics. When molten salts are involved, high temperature corrosions become severe. In this sense, corrosions of alloys with molten carbonates have the most severe material problems. Systematic investigation on corrosion behavior of Fe/21Cr/Ti or Al alloy has been done in (62+38)mol% (Li+K)$CO_3$ melt at $650^{\circ}C$ using the electrochemical impedance spectroscopy method. It was found that the corrosion current of these Fe-based alloys decreased with increasing Al or Ti. And Al addition improved the corrosion resistance of this type of specimen and more improvement of corrosion resistance was observed at the specimen added with Al.

A Study on Direct Alcohol Fuel Cells for Portable Powers (휴대전원용 직접 알코올 연료전지의 특성에 관한 연구)

  • Yoon S. R.;Cha S. Y.;Oh I. W.;Hong S. A.;Ha H. Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.65-69
    • /
    • 2001
  • The potential change, and the crossover of alcohol in a liquid-feed solid polymer electrolyte fuel cell operating at atmosphere and room temperature was investigated. Alcohol crossover was generated from all the alcohol by using the fuel. The single-cell property of direct methanol fuel cell was higher than that of other alcohol species as $31mW/cm^2$ at 0.23 V at 4.5M of methanol.

The effect of PEMFC stack performance at air supply condition (공기공급 조건이 스택성능에 미치는 영향)

  • Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.232-238
    • /
    • 2008
  • Research has been proceeded on fuel cell which is fueled by hydrogen. Polymer electrolyte membrane fuel cell (PEMFC) is promising power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, temperature dependent performance. These problems could be solved by experiment which is useful for analysis and optimization of fuel cell performance and heat management. In this paper, when hydrogen flows constantly at the stoichiometry of ${\xi}=1.6$, the performance of the fuel cell stack was increased and the voltage difference between each cells was decreased according to the increase of air stoichiometry by 2.0, 2.5, 3.0. Therefore, the control of air flow rate in the same gas channel is important to get higher performance. Purpose of this research is to expect operation temperature, flow rate, performance and mass transportation through experiment and to help actual manufacture of PEM fuel cell stack.

A Study on Electronically Controlled R-134a Heat Pump System for a Fuel Cell Electric Vehicle (FCEV) (연료전지 자동차용 R-134a 전동식 히트펌프 시스템 개발에 관한 연구)

  • Lee, Jun-Kyoung;Lee, Dong-Hyuk;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.124-132
    • /
    • 2007
  • The main objective of this work is to investigate the characteristics of a heat pump system for fuel cell electric vehicle (FCEV). The present heat pump system adopts an electrically driven compressor running with R134a and uses the heat from the fuel cell stack as the heat source for the exterior heat exchanger. The experimental work has been done with various operating conditions such as different compressor speeds, fuel cell stack coolant temperatures and flow rates. The heating capacity was measured to be from 4 to 10 kW at $-20^{\circ}C$ ambient temperature, and the outlet temperature of interior heat exchanger was up to $70^{\circ}C$. After 30 seconds from start-up, the system reached a steady state and the heating capacity of 6.8 kW was acquired, and after 90 seconds, the air outlet temperature of interior heat exchanger became $35^{\circ}C$.

Operating Characteristics of Direct Methanol Fuel Cell Based on Pt-Ru/C Anode Catalyst (Pt-Ru/C 촉매를 이용한 직접메탄을 연료전지 운전 특성)

  • Jung, D.H.;Lee, C.H.;Kim, C.S.;Chun, Y.G.;Shin, D.R.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1252-1254
    • /
    • 1997
  • Direct methanol fuel cell based on a proton-exchange membrane electrolyte was investigated. 60% Pt-Ru/C and 60%Pt/C catalysts were employed for methanol oxidation and oxygen reduction, respectively. Morphologies of the catalysts were investigated by x-ray power diffraction, energy dispersive x-ray spectroscopy, and transmission microscopy. Electrochemical characteristics of the catalysts were tested by using cyclic voltametry technique. I-V characteristics of the fuel cell were tested by changing methanol concentration, temperature, and Nafion type as a proton-exchange membrane electrolyte. AC impedance technique was used to investigate the electrochemical performance of the fuel cell. The performance of single cell was enhance with increasing cell temperature. High operation temperature attributed to the combined effects of the reduction of ohmic resistance and polarization. High cell voltage was obtained from the concentration of 205M methanol. With Nafion 112, a current density of $230mA/cm^2$ at 0.55V was obtained from the concentration of 2.5M methanol.

  • PDF

Performance Analysis of Ammonia-Fed Solid Oxide Fuel Cell Using Alternating Flow (교류 흐름 방식을 적용한 암모니아 공급 고체산화물 연료전지의 성능 분석)

  • QUACH, THAI-QUYEN;GIAP, VAN-TIEN;LEE, DONG KEUN;LEE, SUNYOUP;BAE, YONGGYUN;AHN, KOOK YOUNG;KIM, YOUNG SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.557-565
    • /
    • 2022
  • The effect of flow configuration in ammonia-fed solid oxide fuel cell are investigated by using a three-dimensional numerical model. Typical flow configurations including co-flow and counter-flow are considered. The ammonia is directly fed into the stack without any external reforming process, resulting in an internal decomposition of NH3 in the anode electrode of the stack. The result showed that temperature profile in the case of counter-flow is more uniform than the co-flow configuration. The counter-flow cell, the temperature is highest at the middle of the channel while in the case of co-flow, the temperature is continuously increased and reached maximum value at the outlet area. This leads to a higher averaged current density in counter-flow compared to that of co-flow, about 5%.

Model - Based Sensor Fault Detection and Isolation for a Fuel Cell in an Automotive Application (모델 기반 연료전지 스택 온도 센서 고장 감지 및 판별)

  • Han, Jaeyoung;Kim, Younghyeon;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.735-742
    • /
    • 2017
  • In this study, an effective model-based sensor fault detection methodology that can detect and isolate PEM temperature sensors fault is introduced. In fuel cell vehicle operation process, the stack temperature affects durability of a fuel cell. Thus, it is important for fault algorithm to detect the fault signals. The major objective of sensor fault detection is to guarantee the healthy operations of the fuel cell system and to prevent the stack from high temperature and low temperature. For the residual implementation, parity equation based on the state space is used to detect the sensors fault as stack temperature and coolant inlet temperature, and residual is compared with the healthy temperature signals. Then the residuals are evaluated by various fault scenarios that detect the presence of the sensor fault. In the result, the designed in this study fault algorithm can detect the fault signal.

Development of Temperature Control System to use in Building Heating of low Temperature Heat of PEMFC (고분자전해질 연료전지의 중저온 열원을 건물난방에 이용하기 위한 온도 제어장치 개발)

  • Cha, Kwang-Seok;Kim, Hway-Suh
    • Plant Journal
    • /
    • v.10 no.3
    • /
    • pp.45-51
    • /
    • 2014
  • This study performs several experiments on a newly developed temperature safety system that can be used for residential building heating systems, the heat source of which is derived from a conventional fuel cell. Prior to this, the hot water made from a fuel cell was not used in residential housing but just went to waste. The present safety system is installed in the current underfloor heating system. At first we used the CFD technique to develop a new heat exchanger. The fuel cell must satisfy the thermal conditions of the inlet temperature being $55^{\circ}C$ and the outlet temperature being $60^{\circ}C$. But variations in weather cause fluctuations in the heating water temperature. The experimental results show our new system capable of maintaining the temperature difference within a ${\pm}0.5^{\circ}C$ range. So we believe that our new PFMFC fuel cell stack array is a good candidate for being used in residential heating systems.

  • PDF