DOI QR코드

DOI QR Code

Model - Based Sensor Fault Detection and Isolation for a Fuel Cell in an Automotive Application

모델 기반 연료전지 스택 온도 센서 고장 감지 및 판별

  • Han, Jaeyoung (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Younghyeon (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Yu, Sangseok (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.)
  • Received : 2017.04.30
  • Accepted : 2017.07.17
  • Published : 2017.11.01

Abstract

In this study, an effective model-based sensor fault detection methodology that can detect and isolate PEM temperature sensors fault is introduced. In fuel cell vehicle operation process, the stack temperature affects durability of a fuel cell. Thus, it is important for fault algorithm to detect the fault signals. The major objective of sensor fault detection is to guarantee the healthy operations of the fuel cell system and to prevent the stack from high temperature and low temperature. For the residual implementation, parity equation based on the state space is used to detect the sensors fault as stack temperature and coolant inlet temperature, and residual is compared with the healthy temperature signals. Then the residuals are evaluated by various fault scenarios that detect the presence of the sensor fault. In the result, the designed in this study fault algorithm can detect the fault signal.

본 연구에서는 PEM 연료전지 온도 센서의 고장을 감지 및 판별할 수 있는 모델 기반 센서 고장 감지 방법이 적용된다. 연료전지 차량이 작동하는 과정에서 스택 온도는 연료전지의 내구성에 영향을 미친다. 따라서 고장 진단 알고리즘이 고장 신호를 감지하는 것은 중요하다. 센서 고장 감지의 주요 목적은 연료전지 시스템의 안정적인 작동을 보장하여 고온과 저온으로부터 스택을 보호하는 것이다. 상태 공간에 기반한 패러티 방정식이 스택 온도와 냉각수 입구 온도와 같은 센서 고장을 감지하는데 적용되며, 잔차는 정상적인 온도 신호와 비교된다. 그리고 잔차는 현재의 센서 고장을 감지하는 다양한 고장 시나리오에 의해 평가된다. 결론적으로, 본 연구에서 설계된 고장 알고리즘이 고장 신호를 감지할 수 있다.

Keywords

References

  1. Wang, C., Xiong, R., He, H., Ding, X. and Shen, W., 2016 "Efficiency Analysis of a Bidirectional DC/DC Converter in a Hybrid Energy Storage System for Plug-in Hybrid Electric Vehicles," Applied Energy, Vol. 183, pp. 612-622. https://doi.org/10.1016/j.apenergy.2016.08.178
  2. Li, L., Li, X., Wang, X., Song, J., He, K. and Li, C., 2016 "Analysis of Downshift'S Improvement to Energy Efficiency of an Electric Vehicle during Regenerative Braking," Applied Energy, Vol. 176, pp. 125-137. https://doi.org/10.1016/j.apenergy.2016.05.042
  3. Shabbir, W. and Evangelou, S. A., 2014, "Real-time Control Strategy to Maximize Hybrid Electric Vehicle Powertrain Efficiency," Applied Energy, Vol. 135, pp. 512-522. https://doi.org/10.1016/j.apenergy.2014.08.083
  4. Pahon, E., Steiner, N. Y., Jemei, S., Hissel, D. and Mocoteguy, P., 2016 " A Signal-based Method for Fast PEMFC Diagnosis," Applied Energy, Vol. 165, pp. 748-758. https://doi.org/10.1016/j.apenergy.2015.12.084
  5. Lebreton, C., Benne, M., Damour, C., Yousfi-Steiner, N., Grondin-Perez, B., Hissel, D. and Chabriat, J-P., 2015, "Fault Tolerant Control Strategy Applied to PEMFC Water Management," International Journal of Hydrogen Energy, Vol. 40, pp.10636-10646. https://doi.org/10.1016/j.ijhydene.2015.06.115
  6. Guilbert, D., Guarisco, M., Gaillard, A., N'Diaye, A. and Djerdir, J., 2015 "FPGA based Fault-tolerant Control on an Interleaved DC/DC Boost Converter for Fuel Cell Electric Vehicle Applications," International Journal of Hydrogen Energy, Vol. 40, pp. 15815-15822. https://doi.org/10.1016/j.ijhydene.2015.03.124
  7. Benouioua, D., Candusso, D., Harel, F. and Oukhellou, L., "Fuel Cell Diagnosis Method based on Multifractal Analysis of Stack Voltage Signal," International Journal of Hydrogen Energy, Vol. 39, pp. 2236-2245.
  8. Li, Zhongliang., Outbib, R., Giurgea, S., Hissel, D., Jemei, H., Giraud, A. and Rosini, S., 2016 "Online Implementation of SVM based Fault Diagnosis Strategy for PEMFC System," Applied Energy, Vol. 164, pp. 284-293. https://doi.org/10.1016/j.apenergy.2015.11.060
  9. Wu, X. and Zhou, B., 2016 "Fault Tolerance Control for Proton Exchange Membrane Fuel Cell Systems," Journal of Power Sources, Vol. 324, pp. 804-829. https://doi.org/10.1016/j.jpowsour.2016.05.066