DOI QR코드

DOI QR Code

Effects of Electrode Material on Electrochemical Conversion of Carbon Dioxide Using Molten Carbonate Electrolyte

용융탄산염 전해질에서 이산화탄소의 전기화학적 전환에 전극 재질이 미치는 영향

  • Received : 2017.04.27
  • Accepted : 2017.08.09
  • Published : 2017.11.01

Abstract

The electrochemical conversion of $CO_2$ is one of the methods for reducing $CO_2$. Four materials (Ag, Ni, Pt, and Ir) were selected as the electrodes. The electrochemical conversion was performed under a cell voltage of 4.0 V at $600^{\circ}C$. The amounts of $CO_2$ reduction and carbon production were at the highest for Ag, followed by, Pt, Ni, and then Ir. The produced carbon samples were analyzed by thermogravimetric analysis and XRD. The thermogravimetric analysis results indicated that all the carbon produced at each electrode exhibited similar thermal reactivity. The XRD results showed that the crystallization of carbon was different depending on the electrode utilized. Although electrochemical conversion was the highest for the Ag electrode, a loss of material accompanied it. Therefore, for this study, the optimal electrode is Pt, taking into account reactivity and material losses.

이산화탄소의 농도를 줄이는 방법 중 하나로 전기화학을 이용하여 이산화탄소를 고부가 가치인 탄소로 전환하는 연구가 진행 중이다. 본 연구에서는 4.0 V, $600^{\circ}C$의 실험 조건에서 은, 니켈, 백금, 이리듐 전극을 사용하였다. 720분 동안 이산화탄소의 전환을 수행하였으며, 각 전극에서 생성된 탄소는 열중량 분석 및 XRD 분석을 수행하였다. 이산화탄소의 전환 및 생성 탄소의 양은 은, 백금, 니켈, 이리듐으로 나타났다. 열중량 분석을 통해 각 전극에서 생성된 탄소는 유사한 열 반응성을 가지며, XRD 분석을 통해 전극의 반응성에 따라 탄소의 결정성이 달라짐을 확인할 수 있었다. 은 전극은 전기화학적 전환 성능은 가장 높지만 약한 내구성을 보이며, 전극의 반응성 및 내구성을 고려하였을 때 백금이 4개의 재질 중에서 가장 적합함을 확인하였다.

Keywords

References

  1. Zang, X. P. and Cheng, X. M., 2009, "Energy Consumption, Carbon Emissions, and Economic Growth in China," Ecological Economics, Vol. 68, No. 10, pp. 2706-2712. https://doi.org/10.1016/j.ecolecon.2009.05.011
  2. Chae, S. Y. and Kwon, S. J., 2012, "A Study on Domestic Policy Framework for Application of Carbon Dioxide Capture and Storage," Journal of the Korean Society of Marine Environment & Safety, Vol. 18, No. 6, pp. 617-625. https://doi.org/10.7837/kosomes.2012.18.6.617
  3. Lee, M. H. and Kang, S. M., 2011, "An Analysis of Substitution between Fuel and Capital in the Korean Fossil-fuel Power," Korean Energy Economic Review, Vol. 10, No. 1, pp. 1-24.
  4. Chen, H., Wang, Z., Chen, X. and Wang, L., 2017, "Increasing Permeability of Coal Seams using the Phase Energy of Liquid Carbon Dioxide," Journal of $CO_2$ Utilization, Vol. 19, No. 13, pp. 112-119. https://doi.org/10.1016/j.jcou.2017.03.010
  5. Lee, H. S., Trihamdani, A. R., Kubata, T., Lizuka, S. and Phuong, T. T. T., 2017, "Impacts of Land Use Changes from the Hanoi Master Plan 2030 on Urban Heat Islands: Part 2. Influence of Global warming," Sustainable Cities and Society, Vol. 31, pp. 95-108. https://doi.org/10.1016/j.scs.2017.02.015
  6. McCarthy, M. P., Best, M. J. and Betts, R. A., 2010, "Climate Change in Cities due to Global Warming and Urban Effects," GEOPHYSICAL RESEARCH LETTERS, Vol. 37, No. 9.
  7. Bale, J. S., Master, G. J., Hodkinson, I.D., Awmack, C., Bezemer, T. M., Brown, V. K. and Good, J. E, 2002, "Herbivory in Global Climate Change Research: Direct Effects of Rising Temperature on Inset Herbivores," Global Change Biology, Vol. 8, No. 1, pp. 1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
  8. Schlenker, W. and Roberts, M. J., 2009, "Nonlinear Temperature Effects Indicate Severe Damages to U.S. Crop Yields under Climate Change," Proceedings of the National Academy of sciences, Vol. 106, No. 37, pp. 15594-15598. https://doi.org/10.1073/pnas.0906865106
  9. Choi, J. and Chang, T., 2012, "Recent Development of Carbon Dioxide Conversion Technology," CLEAN TECHNOLOGY, Vol. 18, No. 3, pp. 229-249. https://doi.org/10.7464/ksct.2012.18.3.229
  10. Huh, C., Kang, S. G. and Ju, H. H., 2011, "Consideration of Carbon Dioxide Capture and Geological Storage(CCS) as Clean Development Mechanism(CDM) Project Activities: Key Issues Related with Geological Storage and Response Strategies," Journal of the Korean Society, Vol. 14, No. 1, pp. 51-64.
  11. Olajire, A. A., 2013, "Valorization of Greenhouse Carbon Dioxide Emissions into Valueadded Products by Catalytic Processes," Journal of $CO_2$ Utilization, Vol. 3, pp. 74-92.
  12. Yin, H., Mao, X., Tang, D., Xiao, W., Xing, L., Zhu, H., ... and Sadoway, D. R., 2013, "Capture and Electrochemical Conversion of $CO_2$ to Value-added Carbon and Oxygen by Molten Salt Electrolysis," Energy & Environmental Science, Vol. 6, No, 5, pp. 1538-1545. https://doi.org/10.1039/c3ee24132g
  13. Kavan, L., 1997 "Electrochemical Carbon," Chemical reviews, Vol. 97, No. 8, pp. 3061-3082. https://doi.org/10.1021/cr960003n
  14. Uhm, S. and Kim, Y. D., 2014, "Electrochemical Conversion of Carbon Dioxide in a Solid Oxide Electrolysis Cell," Current Applied Physics, Vol. 14, No. 5, pp. 672-679. https://doi.org/10.1016/j.cap.2014.02.013
  15. Li, L., Shi, Z., Gao, B., Hu, X. and Wang, Z., 2016, "Electrochemical Conversion of $CO_2$ to Carbon and Oxygen in $LiCl-Li_2O$ Melts," Electrochimica Acta, Vol. 190, pp. 655-658. https://doi.org/10.1016/j.electacta.2015.12.202
  16. Deng, B., Chen, Z., Gao, M., Song, Y., Zheng, K., Tang, J., ... and Wang, D., 2016, "Molten Salt $CO_2$ Capture and Electro-transformation (MSCCET) into Capacitive Carbon at Medium Temperature: Effect of the Electrolyte Composition," Faraday discussions, Vol. 190, pp. 241-258. https://doi.org/10.1039/C5FD00234F
  17. Ahn, S., Rhie, Y., Eom, S., Sung, Y., Moon, C., Kang, K., Choi, G. and Kim, D. J., 2012, "An Experimental Study on the Characteristics of Electrochemical Reactions of RDF/RPF in the Direct Carbon Fuel Cell," Transactions of the Korean hydrogen and new energy society, Vol. 23 No. 5, pp. 513-520.
  18. Ahn, S., Eom, S., Rhie, Y., Moon, C., Sung, Y., Choi, G. and Kim, D., 2012, "A Study on the Effect of Coal Properties on the Electrochemical Reactions in the Direct Carbon Fuel Cell System," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 10, pp. 1033-1041. https://doi.org/10.3795/KSME-B.2012.36.10.1033
  19. Eom, S., Cho, J., Ahn, S., Sung, Y., Choi, G. and Kim, D., 2016, "Comparison of the Electrochemical Reaction Parameter of Graphite and Sub-bituminous Coal in a Direct Carbon Fuel Cell," Energy & Fuels, Vol. 30, No. 4, pp. 3502-3508. https://doi.org/10.1021/acs.energyfuels.5b02904
  20. Kim, D., Eom, S., Choi, G. and Kim, D., 2016, "Correlation Between Surface Properties of Fuel and Performance of Direct Carbon Fuel Cell by Acid Treatment," Trans. Korean Soc. Mech. Eng. B, Vol. 40, No. 11, pp. 697-704. https://doi.org/10.3795/KSME-B.2016.40.11.697
  21. Ge, J., Hu, L., Song, Y. and Jiao, S., 2016, "An Investigation into the Carbon Nucleation and Growth on a Nickel Substrate in $LiCl-Li_2CO_3$ Melts," Faraday discussions, Vol. 190, pp. 259-268. https://doi.org/10.1039/C5FD00217F
  22. Tang, D., Yin, H., Mao, X., Xiao, W. and Wang, D. H., 2013, "Effects of Applied Voltage and Temperature on the Electrochemical Production of Carbon Powders from $CO_2$ in Molten Salt with an Inert Anode," Electrochimica Acta, Vol. 114, pp. 567-573. https://doi.org/10.1016/j.electacta.2013.10.109
  23. Janz, G. J., Conte, A., and Neuenschwander, E., 1963, "Corrosion of Platinum, Gold, Silver and Refractories in Molten Carbonates," Corrosion, Vol. 19, No. 8, pp. 292t-294t. https://doi.org/10.5006/0010-9312-19.8.292
  24. Ijije, H. V., Lawrence, R. C. and Chen, G. Z., 2014, "Carbon Electrodeposition in Molten Salts: Electrode Reactions and Applications," RSC Advances, Vol. 4, No. 67, pp. 35808-35817. https://doi.org/10.1039/C4RA04629C
  25. Ijije, H. V., Sun, C. and Chen, G. Z., 2014, "Indirect Electrochemical Reduction of Carbon Dioxide to Carbon Nanopowders in Molten Alkali Carbonates: Process Variables and Product Properties," Carbon, Vol. 73, pp. 163-174. https://doi.org/10.1016/j.carbon.2014.02.052
  26. Zhao, X., Zhang, J., Wang, B., Zada, A. and Humayun, M., 2015, "Biochemical Synthesis of Ag/AgCl Nanoparticles for Visible-light-driven Photocatalytic Removal of Colored Dyes," Materials, Vol. 8, No. 5, pp. 2043-2053. https://doi.org/10.3390/ma8052043