DOI QR코드

DOI QR Code

Effects of Pitch on Pool Boiling from Horizontal Tube Array

피치가 수평 튜브 배열의 풀비등에 미치는 영향

  • Received : 2017.04.13
  • Accepted : 2017.09.03
  • Published : 2017.11.01

Abstract

An experimental study was performed to investigate the combined effects of the pitch and heat flux of nearby tubes on boiling in a pool as well as the heat transfer from a horizontally-installed tube bundle. For this test, two smooth stainless steel tubes (19 mm outside diameter) were used, and the water was at atmospheric pressure. The pitch of these tubes was varied between 28.5 mm and 95 mm, and the heat flux of the nearby tube altered between 0 and $90kW/m^2$. Enhancements in heat transfer were clearly observed when the heat flux of the nearby tube increased while the heat flux of the test section remained below $40kW/m^2$. The tube pitch was found to have a negligible effect on heat transfer when the pitch was greater than four times larger than the tube diameter. The circulating flow, convective flow, and liquid agitation were all seen to enhance heat transfer; however, the interaction between the flow and coalescence of bubbles was detrimental to heat transfer.

튜브 피치와 주변 튜브의 열유속이 수평으로 설치된 튜브 배열의 풀비등 열전달에 미치는 영향을 살펴보기 위하여 실험적 연구를 수행하였다. 실험을 위하여 외경이 19 mm인 두 개의 스테인리스강 튜브와 대기압 상태인 물을 사용하였다. 튜브간 피치는 18.5~95 mm이며, 주변 튜브의 열유속은 $0{\sim}90kW/m^2$이다. 열전달 향상은 주변 튜브의 열유속이 크고 시편의 열유속이 $40kW/m^2$보다 낮은 경우에 분명하게 관찰되었다. 피치가 튜브 지름의 4배 보다 크면 피치 변화가 열전달에 미치는 영향은 무시할 수 있을 정도이다. 순환유동, 대류유동, 액체교란은 열전달을 향상시키며 유동간섭과 기포군집은 열전달을 둔화시킨다.

Keywords

References

  1. Schaffrath, A., Hicken, E. F., Jaegers, H. and Prasser, H.M., 1999, "Operation Conditions of the Emergency Condenser of the SWR 1000," Nuclear Engineering and Design, Vol. 188, pp. 303-318. https://doi.org/10.1016/S0029-5493(99)00044-8
  2. Kang, K. H., Kim, S., Bae, B. U., Cho, Y. J., Park, Y. S. and Yun, B. J., 2012, "Separate and Integral Effect Tests for Validation of Cooling and Operational Performance of the APR+ Passive Auxiliary Feedwater System," Nuclear Engineering and Technology, Vol. 44, pp. 597-610. https://doi.org/10.5516/NET.02.2012.710
  3. Corletti, M. M. and Hochreiter, L. E., 1991, "Advanced Light Water Reactor Passive Residual Heat Removal Heat Exchanger Test," Proc. of the 1st JSME/ASME Joint International Conference on Nuclear Engineering, Tokyo, Japan, pp. 381-387.
  4. Chun, M. H. and Kang, M. G., 1998, "Effects of Heat Exchanger Tube Parameters on Nucleate Pool Boiling Heat Transfer," J. of Heat Transfer, Vol. 120, pp. 468-476. https://doi.org/10.1115/1.2824272
  5. Cho, Y.J., Bae, S.W., Bae, B.U., Kim, S., Kang, K.H. and Yun, B.J., 2012, "Analytical Studies of the Heat Removal Capability of a Passive Auxiliary Feedwater System (PAFS)," Nuclear Engineering and Design, Vol. 248, pp. 306-316. https://doi.org/10.1016/j.nucengdes.2012.03.046
  6. van de Venne, T., 1992, "Applications of Passive Safety Systems to Large PWRs," Proceedings of the ANP '92, Tokyo, Paper No. 17.4.
  7. Aprin, L., Mercier, P. and Tadrist, L., 2011, "Local Heat Transfer Analysis for Boiling of Hydrocarbons in Complex Geometries: A New Approach for Heat Transfer Prediction in Staggered Tube Bundle," Int. J. Heat Mass Transfer, Vol. 54, pp. 4203-4219. https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.023
  8. Swain, A. and Das, M. K., 2014, "A Review on Saturated Boiling of Liquids on Tube Bundles," Heat Mass Transfer, Vol. 50, pp. 617-637. https://doi.org/10.1007/s00231-013-1257-1
  9. Kang, M. G., 2017, "Development of Empirical Correlation to Evaluate Bundle Effect in Saturated Pool Boiling of Water," Transactions of the KSME B, Vol. 41, pp. 1-8. https://doi.org/10.3795/KSME-B.2017.41.1.001
  10. Ribatski, G., Jabardo, J. and Silva, E., 2008, "Modeling and Experimental Study of Nucleate Boiling on a Vertical Array of Horizontal Plain Tubes," Applied Thermal and Fluid Science, Vol. 32, pp. 1530-1537. https://doi.org/10.1016/j.expthermflusci.2008.04.008
  11. Gupta, A., Saini, J. S. and Varma, H. K., 1995, "Boiling Heat Transfer in Small Horizontal Tube Bundles at Low Cross-flow Velocities," Int. J. Heat Mass Transfer, Vol. 38, pp. 599-605. https://doi.org/10.1016/0017-9310(94)00282-Z
  12. Hahne, E. and Muller, J., 1983, "Boiling on a Finned Tube and a Finned Tube Bundle," Int. J. Heat Mass Transfer, Vol. 26, pp. 849-859. https://doi.org/10.1016/S0017-9310(83)80109-4
  13. Ustinov, A., Ustinov, V. and Mitrovic, J., 2011, "Pool Boiling Heat Transfer of Tandem Tubes Provided with the Novel Microstructure," Int. J. Heat Fluid Flow, Vol. 32, pp. 777-784. https://doi.org/10.1016/j.ijheatfluidflow.2011.04.001
  14. Kang, M. G., 2015, "Pool Boiling Heat Transfer on Tandem Tubes in Vertical Alignment," Int. J. Heat and Mass Transfer, Vol. 87, pp. 138-144. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.015
  15. Kang, M. G., 2016, "Effect of Tube Pitch on Pool Boiling Heat Transfer of Vertical Tube Bundle," JP Journal of Heat and Mass Transfer, Vol. 13, pp. 485-496. https://doi.org/10.17654/HM013040485
  16. Hahne, E., Chen, Q.-R. and Windisch, R., 1991, "Pool Boiling Heat Transfer on Finned Tubes -an Experimental and Theoretical Study," Int. J. Heat Mass Transfer, Vol. 34, pp. 2071-2079. https://doi.org/10.1016/0017-9310(91)90218-4
  17. Memory, S. B., Chilman, S. V. and Marto, P. J., 1994, "Nucleate Pool Boiling of a TURBO-B Bundle in R-113," ASME J. Heat Transfer, Vol. 116, pp. 670-678. https://doi.org/10.1115/1.2910921
  18. Nelson, P. J. and Burnside, B. M., 1985, "Boiling the Immiscible Water/n-nonane System from a Tube Bundle," Int. J. Heat Mass Transfer, Vol. 28, pp. 1257-1267. https://doi.org/10.1016/0017-9310(85)90157-7
  19. Xuenong, G., Huibin, Y., Huang, Y., Yutang, F. and Zhengguo, Z. 2009, "Nucleate Pool-boiling Enhancement Outside a Horizontal Bank of Twisted Tubes with Machined Porous Surface," Applied Thermal Engineering, Vol. 29, pp. 3212-3217. https://doi.org/10.1016/j.applthermaleng.2009.04.026
  20. Kumar, S., Mohanty, B. and Gupta, S. C., 2002, "Boiling Heat Transfer from a Vertical Row of Horizontal Tubes," Int. J. Heat Mass Transfer, Vol. 45, pp. 3857-3864. https://doi.org/10.1016/S0017-9310(01)00360-X
  21. Kumar, S., Jain, A., Gupta, S. C. and Mohanty, B., 2000, "Boiling Heat Transfer from a Vertical Row of Horizontal Reentrant Cavity Tubes," Proceedings of the ASME-ZSITS International Thermal Science Seminar, June 11-14, Bled, Slovenia.
  22. Holman, J. P., 1997, Heat Transfer, 8th ed., McGraw-Hill.
  23. Coleman, H. W. and Steele, W. G., 1999, Experimentation and Uncertainty Analysis for Engineers, 2nd Ed., John Wiley & Sons.
  24. Cornwell, K. and Houston, S. D., 1994, "Nucleate Pool Boiling on Horizontal Tubes: a Convectionbased Correlation," Int. J. Heat Mass Transfer, Vol. 37, pp. 303-309.