• Title/Summary/Keyword: Fuel Cell Temperature

Search Result 933, Processing Time 0.028 seconds

Single Cell Performance Recovery of $SO_2$ Poisioned PEMFC using Cyclic Voltametry (순환전류 전압법을 이용한 이산화황 피독 PEMFC 단위전지의 성능 회복)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.497-501
    • /
    • 2011
  • Polymer electrolyte membrane fuel cell (PEMFC) performance degrade when sulfur dioxide is present in the fuel hydrogen gas, this is referred as $SO_2$ poisoning. This paper reveals $SO_2$ poisoning on PEMFC cathode part by measuring electrical performance of single cell under 1 ppm and 5 ppm on $SO_2$ gas operating. The security of $SO_2$ poisoning depended on $SO_2$ concentration under the best operating conditions($65^{\circ}C$ of cell temperature and 100% of relative humidity between anode and cathode). $SO_2$ adsorption occured on the surface of catalyst layer on membrane electrode assembly (MEA), In addition, MEA poisoning by $SO_2$ was cumulative but reversible. After poisoning within 5 ppm $SO_2$ for 1hr, the electrical performance of PEMFC was found to recover up to about 93% by cyclic voltametry scan.

A Study on the Sliding/Impact Wear of a Nuclear Fuel Rod in Room Temperature Air:(I) Development of a Test Rig and Characteristic Analysis (상온 핵연료봉 미끄럼/충격 마멸특성연구:(I) 장치개발 및 특성분석)

  • Lee, Young-Ho;Lee, Kang-Hee;Kim, Hyung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1859-1863
    • /
    • 2007
  • A new type of a fretting wear tester has been designed and developed in order to simulate the actual vibration behavior of a nuclear fuel rod for springs/dimples in room temperature. When considering the actual contact condition between fuel rod and spring/dimple, if fretting wear progress due to the flow-induced vibration (FIV) under a specific normal load exerted on the fuel rod by the elastic deformation of the spring, the contacting force between the fuel rod and dimple that were located in the opposite side should be decreased. Consequently, the evaluation of developed spacer grids against fretting wear damage should be performed with the results of a cell unit experiments because the contacting force is one of the most important variables that influence to the fretting wear mechanism. Therefore, it is necessary to develop a new type of fretting test rig in order to simulate the actual contact condition. In this paper, the development procedure of a new fretting wear tester and its performance were discussed in detail.

  • PDF

Experimental Analyses of Cell Voltages for a Two-cell PEM Stack Under Various Operating Conditions

  • Park, Sang-Kyun;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.881-890
    • /
    • 2011
  • Analyses of performance and behavior of the individual PEM fuel cells (PEMFC) under different operating conditions are of importance optimally to design and efficiently to operate the stack. The paper focuses on experimental analyses of a two-cell stack under different operating conditions, which performance and behavior are measured by the voltage of a cell as well as the stack. Experimental parameters include stoichiometric ratio, temperature of the air supplied under different working stack temperatures and loads. Results showed that the cell voltages are dominantly influenced by the temperature of the air supplied among others. In addition, an inherent difference between the first and the second cell voltage exists because of the tolerances of the cell components and the resulting different over-potentials at different equilibrium states. Furthermore, it is shown that the proton conductivity in the membranes conditioned by the humidity in the cathode channel highly affects the voltage differences of the two cells.

The fabrication and characterization of a phase change type micro actuator (상 변화방식 마이크로 액츄에이터의 제조 및 성능에 관한 연구)

  • Park, Seung-In;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Hee-Suk;Kang, Shin-Ill
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1433-1438
    • /
    • 2007
  • Characteristics of a phase change type micro actuator have been studied. The micro actuator has been designed for a micro-pump in an active direct methanol fuel cell(DMFC), consisting of an actuating chamber, a membrane, an electric heater, and a sensor of resistance temperature detector (RTD). In the present study, researches have been focused on the response of the actuator to control algorithm of the heater. The experiments demonstrated that the displacement of the membrane increase with temperature variation which is a function of applied voltage, duty ratio, and operating frequency of heating. The results also showed that operation of the actuator with high voltage at small duty of heating is more efficient than the same power consumption of heating with low voltage at large duty.

  • PDF

Ammonia Decomposition Over Tantalum Carbides of Hydrogen Fuel Cell (수소연료전지용 탄탈륨 탄화물에 대한 암모니아 분해반응)

  • Choi, Jeong-Gil
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • Tantalum carbide crystallites which is to be used for $H_2$ fuel cell has been synthesized via a temperature-programmed reduction of $Ta_2O_5$ with pure $CH_4$. The resultant Ta carbide crystallites prepared using two different heating rates and space velocity exhibit the different surface areas. The $O_2$ uptake has a linear relation with surface area, corresponding to an oxygen capacity of $1.36{\times}10^{13}\;O\;cm^{-2}$. Tantalum carbide crystallites are very active for hydrogen production form ammonia decomposition reaction. Tantalum carbides are as much as two orders of magnitude more active than Pt/C catalyst (Engelhard). The highest activity has been observed at a ratio of $C_1/Ta^{{\delta}+}=0.85$, suggesting the presence of electron transfer between metals and carbon in metal carbides.

A Study of Partial Oxidation of Methane by Pd Catalyst - Effects of Reaction Temperature - (팔라듐 촉매의 메탄 부분산화에 관한 연구 - 반응온도에 따른 효과 -)

  • Lee, Taek-Hong;Mun, Yeong-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.244-249
    • /
    • 2004
  • Pd catalyst have been used in hydrogenation, oxidation, and low temperature combustion reaction. Recently, it has been candidated as a possible reagents in the partial oxidation of methanol reformers of the fuel cell. Pd catalysts, even though it is very precious and expensive, catalytic functioning is good, but it still need to be improved in the matter of durability and low catalytic activity after calcination. In this study, we synthesize the improved Pd catalyst and study their chemical functioning.

Organic / inorganic composite membrane for Polymer Electrolyte Membrane Fuel Cell (고분자전해질 연료전지용 유기/무기 복합 전해질)

  • Choi Seong Ho;Hong Hyeon Sil;Lee Heung Chan;Kim Yu Mi;Kim Geon
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.169-171
    • /
    • 2003
  • Organic/inorganic hybrid membranes have been prepared and evaluated as polymer electrolytes in a polymer electrolyte membrane fuel cell (PEMFC). Previously, partially fluorinated poly (arylenether) was synthesized and the polymer was sulfonated by fuming sulfuric acid$(30\%\;SO_3)$. Modification of these polymers with coupling agent and inorganic materials was carried out to prepare membranes. Membranes cast from these materials were investigated in relation to the proton conductivity and weight loss at the room temperature. It was found that these membranes had a higher conductivity of $10^{-2}\;Scm^{-1}$ at the room temperature. But inorganic materials have leaked out from the hybrid membrane. If this problem is resolved, organic/inorganic hybrid membranes will become satisfactory Polymer electrolytes for the PEMFC.

  • PDF

Characterization of Methanol Crossover through Nafion Membranes by Direct Cell Performance Measurement

  • Park, Kyung-Won;Kim, Young-Min;Kwon, Bu-kil;Choi, Jong-Ho;Park, In-Su;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.226-231
    • /
    • 2002
  • Power densities produced by the permeation of methanol through membranes were directly measured by inserting the membrane in front of anode in a membrane-electrode-assembly of a direct methanol fuel cell (DMFC). The power density was closely related to the loss of power in the DMFC and was strongly affected by temperature. As the cell temperature was increased, the power density resulting from methanol crossover was increased. The increase in methanol crossover had be attributed to diffusion caused or affected by temperature. Methanol crossover a major effect on the performance of a DMFC at a relatively low temperature with $26\%\;loss\;at\;30^{\circ}C$. In order to reduce methanol crossover, a conventional Nafion membrane was modified by the incorporation of Pt or Pd. The reduction in methanol crossover was investigated in these modified membranes by our cell performance measurement. Pt and Pd particles incorporated in the Nafion membranes block methanol pathway and prevent methanol transport through the membranes, which was proved by combining with liquid chromatography.

Numerical Study of Land/Channel Flow-Field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (II) - The Effects of Land/Channel Flow-Field on Temperature and Liquid Saturation Distributions - (고분자전해질형연료전지의 가스 채널 최적화를 위한 수치적 연구 (II) - 가스 채널 치수가 온도와 액체포화 분포에 미치는 영향성 -)

  • Ju, Hyun-Chul;Nam, Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.688-698
    • /
    • 2009
  • Using the multi-dimensional, multi-phase, nonisothermal Polymer Electrolyte Fuel Cell (PEFC) model presented in Part I, the effects of land/channel flow-field on temperature and liquid saturation distributions inside PEFCs are investigated in Part II. The focus is placed on exploring the coupled water transport and heat transfer phenomena within the nonisothermal and two-phase zone existing in the diffusion media (DM) of PEFCs. Numerical simulations are performed varying the land and channel widths and simulation results reveal that the water profile and temperature rise inside PEFCs are considerably altered by changing the land and channel widths, which indicates that oxygen supply and heat removal from the channel to the land regions and liquid water removal from the land toward the gas channels are key factors in determining the water and temperature distributions inside PEFCs. In addition, the adverse liquid saturation gradient along the thru-plane direction is predicted near the land regions by the numerical model, which is due to the vapor-phase diffusion driven by the temperature gradient in the nonisothermal two-phase DM where water evaporates at the hotter catalyst layer, diffuses as a vapor form and then condenses on the cooler land region. Therefore, the vapor phase diffusion exacerbates DM flooding near the land region, while it alleviates DM flooding near the gas channel.