• 제목/요약/키워드: Fuel Cell Dynamics

검색결과 131건 처리시간 0.023초

4kW급 연료전지 하이브리드 자동차 개발을 위한 시스템 동특성 연구 (Study on system dynamic behaviors for 4kW-class fuel cell hybrid vehicle)

  • 이동율;박광진;배중면;정재화;지현진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.93-96
    • /
    • 2006
  • PEMFC(proton exchange membrane fuel cell) is most applicable to automobile in various types of fuel cell. However, to improve system dynamics and logn term Performance fuel cell is supported by auxiliary power unit forming hybrid system. The operating strategy of hybrid system influences on efficiency and stability. In this paper the proper strategies are compared each other considering power distribution and stable system operation. The chosen strategy is simulated by MATLAB simulink to forecast realization of fuel cell hybrid vehicle

  • PDF

연료전지 발전시스템을 이용한 승강장 스크린 도어 제어용 BLDC 전동기 구동 모델링 (Modeling of BLDC Motor Driving System for Platform Screen Door Control applied Fuel Cell Power Generation System)

  • 윤용호
    • 전기학회논문지
    • /
    • 제66권6호
    • /
    • pp.968-974
    • /
    • 2017
  • In this paper, modeling of brushless DC motor (BLDC) driving system for platform screen door control applied fuel cell power generation system has been proposed. At first the system configuration and operational principle of the developed fuel cell simulator has been investigated and the design of BLDC motor driving system is studied and the overall performance and dynamics of the proposed system could be effectively examined by simulation. PSIM simulation program is implemented to verify the performance and compatibility of the fuel cell power generation system and BLDC motor control system modeling.

CFD를 활용한 연료전지 모듈 보호가스 유동 연구 (CFD-based Flow Simulation Study of Fuel Cell Protective Gas)

  • 권기욱;임종구;박종철;신현길
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.86.1-86.1
    • /
    • 2011
  • To improve the safety, the fuel cell operate inside a pressurized enclosure which contains inert gas so called protective gas. The protective gas not only prevents the mixture of hydrogen and oxygen, but also removes the water in the vessel with the condenser. This study presents the details of the flow optimization in order to reduce the humidity in the fuel cell housing. The protective gas flow in the fuel cell container is studied by Computational Fluid Dynamics(CFD) simulations. This study focuses on optimizing the geometry of an protective gas circulation system in fuel cell module to reduce the humidity in the vessel. CFD analysis was carried out for an existing model to understand the flow behavior through the fuel cell system. Based on existing model CFD results, geometrical changes like inlet placement, optimization of outlet size, modification of fuel cell module system are carried out, to improve the flow characteristics. The CFD analysis of the optimized model is again carried out and the results show good improvement in protective gas flow behavior.

  • PDF

고분자 전해질 연료전지용 분리판 최적 설계 (Optimal Design of Bipolar-Plates for a PEM Fuel Cell)

  • 한인수;정지훈;임종구;임찬;정광섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF

건물용 고분자 전해질 연료전지 금속분리판 유동장 형상 변화에 따른 산소 확산 특성에 대한 연구 (A Study on Oxygen Diffusion Characteristics According to Changes in Flow Field Shape of Polymer Electrolyte Membrane Fuel Cell Metallic Bipolar Plate for Building)

  • 박동환;손영준;최윤영;김민진;홍종섭
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.245-255
    • /
    • 2021
  • Various studies about metallic bipolar plates have been conducted to improve fuel cell performance through flow field design optimization. These research works have been mainly focused on fuel cells for vehicle, but not fuel cells for building. In order to reduce the price and volume of fuel cell stacks for building, it is necessary to apply a metallic flow field, In this study, for a metallic flow field applied to a fuel cell for building, the effect of a change in the flow field shape on the performance of a polymer electrolyte membrane fuel cell was confirmed using a model and experiments with a down-sizing single cell. As a result, the flow field using a metal foam outperforms the channel type flow field because it has higher internal differential pressure and higher reactants velocity in gas diffusion layer, resulting in higher water removal and higher oxygen concentration in the catalyst layer than the channel type flow field. This study is expected to contribute to providing basic data for selecting the optimal flow field for the full stack of polymer electrolyte membrane fuel cells for buildings.

연료전지 전력 시스템의 모델링 (The Modeling of Power System with PEM fuel cell)

  • 한경희;이화진;이나영;장혜영;이병송;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.239-241
    • /
    • 2008
  • A powered system with fuel cell is regarded as a high current and low voltage source. Effects of the loads on the electrical power source are important to optimize the integrated power system. The design parameters of the system should be chosen by taking into account the characteristics of the fuel cell, so the costs of the power system at given operating conditions can be reduced. Furthermore, the dynamics characteristic of the system is crucial to acquire performance in applications, particularly interactions between loads and the fuel cell system. Currently, no integrated simulation has been approached to analyze interrelated effects. Therefore, the dynamic models of power conversion system with a PEM fuel cell that includes the PEM fuel cell stack, DC/DC converter and associated controls is developed. Electric lads for the system are derived by using a power theory that separates a load current into active, reactive, distortion or a mixed current component. Dependency of the DC capacitor on the loads are analyzed.

  • PDF

연료전지 분리판 압력손실 감소를 위한 수치해석 및 실험적 연구 (Numerical and Experimental Analysis of Pressure Drop in a Bipolar Plate channel of a Proton Exchange Membrane Fuel Cell)

  • 김희수;강경태;최윤기;이수동
    • 한국수소및신에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.159-165
    • /
    • 2004
  • Fuel cell makes electricity through chemical reaction. Bipolar-plate distribute hydrogen, oxidation using channel geometry condensation of water vapor inside channels of bipolar-plates lowers efficiency of fuel cell. Usually high pressured gas supply is used to solve the water condensation problem with serpentine type channel geometry. In this study, a new channel geometry shows feasible to minimize lowering efficiency due to water condensation through numerical and experimental analysis.

고효율 전력변환장치를 사용한 연료전지 시스템의 토폴로지 (Topology of High Efficiency Power Conversion with Fuel Cell Generation System)

  • 문상필;서기영;이현우;권순걸;;신휘범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.329-333
    • /
    • 2005
  • In this study paper, a 3[kW] Fuel Cell Generation (FCG)system with Fuel Cell(FC)simulator has been proposed. The developed FC simulator generates the actual voltage and current output characteristics of the Proton Exchange Membrane Fuel Cell (PEMFC), so that the overall performance and the dynamics of the proposed system could be effectively examined and tested. In this paper, at first, the system configuration and operational principle of the developed FC simulator has been investigated and the design process of the FCG system is explained in detail. In addition, the validity of the proposed system has been verified by the informative simulation and experimental results.

  • PDF

유로 형상 변화에 따른 CFD 해석 결과와 PEM 연료전지 성능 비교 (Comparison between CFD analysis and experiments according to various PEMFC flow-field designs)

  • 이강인;박민수;이세원;주종남
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.572-575
    • /
    • 2008
  • Flow-field design has much influence over the performance of proton exchange membrane fuel cell (PEMFC) because it affects the pressure magnitude and distribution of the reactant gases. To obtain the pressure magnitude and distribution of reactant gases in four kinds of flow-field designs without additional measurement equipment, computational fluid dynamics (CFD) analysis was performed. After the CFD analysis, the performance values of PEMFC according to the flow-field configurations were measured via a single cell test. As expected, the pressure differences due to different flow-field configurations were related to the PEMFC performance because the actual performance results showed the same tendency as the results of the CFD analysis. A large pressure drop resulted in high PEMFC performance. So, the single serpentine configuration gave the highest performance. On the other hand, the parallel flow-field configuration gave the lowest performance because the pressure difference between inlet and outlet was the lowest.

  • PDF

자동차용 연료전지 냉각계통 열관리 동적 모사 (Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application)

  • 한재영;이강훈;유상석
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1185-1192
    • /
    • 2012
  • 차량용 연료전지는 내연기관보다 운전 온도가 낮아 냉각수의 온도를 낮게 관리해야 하며, 이러한 냉각수 온도는 대기와의 온도차가 내연기관보다 작아 고성능 방열판 및 열관리계가 요구된다. 이러한 차량용 연료전지 열 관리계는 특히 연료전지 운전 온도 및 스택 내 온도분포를 결정하는 중요한 구성품이다. 본 연구에서는 차량용 연료전지 열 관리계 모델을 Matlab/$Simulink^{(R)}$ 환경 하에 개발하였으며, 기본 설계에 적용이 가능하도록 방열판 상세 모델을 개발하고 열 관리계는 팬, 모터, 방열판 그리고 냉각수 펌프로 구성하였다. 팬과 펌프는 경험식을 이용해 모델을 개발하였으며 모터 동특성을 고려하였다. 두 구성품은 연료전지의 입구와 출구 온도를 추출해 정해진 지령을 수령하도록 제어 하였다. 본 연구에는 연료전지 차량에 적합한 방열기 설계를 위해 방열기 특성을 확인하고, 이를 연료전지 시스템과 통합운전하면서, 연료전지 운전제어에 적절한 지 확인하였다.