• Title/Summary/Keyword: Fruit fly

Search Result 54, Processing Time 0.035 seconds

Determination for Inflow Routes of Insects Caused by Manufacturing and Drinking Process in Korean Rice-wine (한국 전통약주에서 제조 및 음용 과정 중 발생하는 곤충의 혼입 경로에 대한 판정)

  • Kim Seung-jin;Lee Jeoung-hoon;Choi Yuung-hwan;Kim Gye-won
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.3
    • /
    • pp.123-127
    • /
    • 2005
  • To determine the possibility of inflow routes for insect in Korean rice-wine, we investigated catalase (CAT) activity and oxygen bubble formation through stereoscopic microscope in pasteurized insects (bee, fly, fruit fly) treated with $H_2O_2$. The pasteurization condition was 30 and 60 min heating at 65 and $70^{\circ}C$. Bubble was not shown under the CAT level of 50 $\mumoles/min/ml$. CAT activity level was more sensitive compared with oxygen bubble formation, but the CAT activity had correlation with oxygen bubble formation method. We also tested bubble formation at room temperature, 65 and $70^{\circ}C$ for 30 days. The bubble formation was slowly decreased in all insects at room temperature during experiment, but it was rapidly decreased at 65 and $70^{\circ}C$. The fruit fly was not shown bubble formation at 65 and $70^{\circ}C$. These results suggest that bubble farmation method was a new simple method for inflow routes of insects caused by manufacturing and drinking process in pasteurized Korean rice-wine.

The Attraction Effect of Different Types of Cuelure on Striped Fruit Flies, Zeugodacus scutellata, in Jeju and Gyeongbuk Regions (제주 및 경북지역에서 cuelure 제형별 호박꽃과실파리(Zeugodacus scutellata)의 유인효과)

  • Yerim Yu;Yong-Bong Lee;Jae-Kwang Jwa;Hyoung-ho Mo;Heungsik Lee;Youngjin Park
    • Korean journal of applied entomology
    • /
    • v.62 no.3
    • /
    • pp.131-137
    • /
    • 2023
  • The striped fruit fly, Zeugodacus scutellata (Diptera: Tephritidae), is one of important pests in Cucurbitaceae plants. The cuelure is currently using with various forms for surveillance to the Z. scutellata male as well as Z. cucurbitae, Z. tau, and Bactrocera tryoni, which are categorized as prohibited-quarantine fruit flies in Korea. This study was conducted to verify the attraction effect of applying the cuelure in different forms in field conditions. In this study, we used cuelure by 3 different forms as solid, liquid, and wax to striped fruit flies using the Steiner trap. The trap was placed in two Jeju and one Gyeongbuk regions and the number of attracted flies by each cuelure form is monitored by every 2 weeks during 2021. Attraction effect on Z. scutellata was significant difference by different cuelure forms in two Jeju regions. Liquid and wax forms of cuelure showed high attraction number to the Z. scutellata male compared with solid form when flies were occurred with high population from July to August in Jeju. However, there was no significant difference on attraction effect at low population in Juju and Gyeongbuk by different forms. Based on field assay, liquid and wax form of cuelure are recommended for surveillance against Z. scutellata male. Furthermore, these results also strongly suggest that the attractant, liquid and wax forms of cuelure, could be effective for surveillance to quarantine fruit flies such as Z. cucurbitae, Z. tau, and B. tryoni in Korea.

The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster

  • Altintas, Ozlem;Park, Sangsoon;Lee, Seung-Jae V.
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.81-92
    • /
    • 2016
  • Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates aging in many organisms, ranging from simple invertebrates to mammals, including humans. Many seminal discoveries regarding the roles of IIS in aging and longevity have been made by using the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. In this review, we describe the mechanisms by which various IIS components regulate aging in C. elegans and D. melanogaster. We also cover systemic and tissue-specific effects of the IIS components on the regulation of lifespan. We further discuss IIS-mediated physiological processes other than aging and their effects on human disease models focusing on C. elegans studies. As both C. elegans and D. melanogaster have been essential for key findings regarding the effects of IIS on organismal aging in general, these invertebrate models will continue to serve as workhorses to help our understanding of mammalian aging.

Adult Longevity and Life table analysis of Striped fruit fly, Bactrocera scutellata (Hendel) (Diptera:Tephritidae) (호박꽃과실파리 성충의 수명과 생명표분석)

  • Jeon, Sung-Wook;Kang, Teak-Jun;Cho, Myoung-Rae;Kim, Kwang-Ho;Lee, Sang Guei;Kim, Ji Soo;Park, Hae Woong
    • Korean journal of applied entomology
    • /
    • v.51 no.4
    • /
    • pp.485-488
    • /
    • 2012
  • The life table of the Striped Fruit Fly, Bactrocera scutellata, was analyzed by using adult longevity and fecundity of B. scutellata at seven constant temperatures (15, 18, 21, 24, 27, 30, $33{\pm}1.0^{\circ}C$) with 65% RH and 16L:8D in the laboratory. The highest values of longevity were observed at $21^{\circ}C$ with the values of 138.0 days for male and 131.2 days for female, respectively. Females of B. scutellata did not oviposit under $18^{\circ}C$ and larvae of B. scutellata could not survive to adulthood over $33^{\circ}C$. The highest value of total fecundity was observed at $24^{\circ}C$ (111.4 eggs) and daily fecundity per female was observed at approximately 1.0. The parameters of the life table were calculated by using the data from eggs to adults of B. scutellata at 4 different temperatures. Net reproduction rate ($R_o$) was highest at $21^{\circ}C$ (52.27). The intrinsic rate of increase ($r_m$) and the finite rate of increase per day (${\lambda}$) were highest at $27^{\circ}C$ (0.07 and 1.07), respectively. The doubling time ($D_t$) was shortest at $27^{\circ}C$ (with 10.02). The mean generation time (T) was shortest at $27^{\circ}C$(50.39).

Temperature-dependent Development Model of the Striped Fruit Fly, Bactrocera scutellata (Hendel)(Diptera: Tephritidae) (호박꽃과실파리 온도 발육모형)

  • Jeon, Sung-Wook;Cho, Myoung-Rae;Kim, Yang-Pyo;Lee, Sang-Guei;Kim, So-Hyung;Yu, Jin;Lee, Jong-Jin;Hwang, Chang-Yeon
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • The striped fruit fly, Bactrocera scutellata, damages pumpkin and other cucurbitaceous plants. The developmental period of each stage was measured at seven constant temperatures (15, 18, 21, 24, 27, 30, and $33{\pm}1.0^{\circ}C$). The developmental time of eggs ranged from 4.2 days at $15^{\circ}C$ to 0.9 days at $33^{\circ}C$. The developmental period of larvae was 4.2 days at $15^{\circ}C$, and slowed in temperatures above $27^{\circ}C$. The developmental period of pupa was 21.5 days at $15^{\circ}C$ and 7.6 days at $33^{\circ}C$. The mortality of eggs was 17.1% at $15^{\circ}C$ and 22.9% at $33^{\circ}C$, Larval mortalities (1st, 2nd, 3rd) were 24.1, 27.3 and 18.2%, respectively, at $15^{\circ}C$, Pupal mortalities were 18.2% at $15^{\circ}C$ and 23.1% at $33^{\circ}C$. The relationship between developmental rate and temperature fit both a linear model and a nonlinear model. The lower threshold temperatures of eggs, larvae, and pupae were 12.5, 10.7, and $6.3^{\circ}C$, respectively, and threshold temperature of the total immature period was $8.5^{\circ}C$. The thermal constants required to complete the egg, larval, and pupal stages were 33.2, 118.3, and 181.2 DD, respectively. The distribution of each development stages was described by a 3-parameter Weibull function.

Technologies Required for Development of Trap-based MAT Control Against the Striped Fruit Fly, Bactrocera scutellata (호박꽃과실파리의 트랩형 수컷박멸제 기반 기술 개발)

  • Kim, Kyusoon;Kim, Minhyun;Kwon, Gimyeon;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.51-60
    • /
    • 2017
  • The striped fruit fly, Bactrocera scutellata, infests pumpkin flowers. Males are attracted to raspberry ketone (RK) and feed the attractant. This study was conducted to determine essential techniques to develop a male annihilation technique (MAT) of this insect pest. Effective attractants were screened in laboratory and field conditions. Both males and females were responsive to methyl eugenol (ME) in laboratory, though no flies were attracted to ME traps in field conditions. In contrast, cuelure (CL), which is a chemical derivative of RK, was effective to attract males of B. scutellata in both laboratory and field conditions. However, RK was equivalent or superior to CL when they were formulated in a form of wax dispenser. A pyrethroid insecticide along with the attractant was effective to attract and kill B. scutellata. Funnel trap was useful for MAT to confirm and count dead flies. These results indicate that MAT against B. scutellata consists of RK and bifenthrin in a wax type formulation, which is installed to a funnel type of trap. These essential factors would be useful to develop MAT applicable to control B. scutellata in fields.

Seasonal Occurrence and Damage of Bactrocera scutellata (Diptera: Tephritidae) in Jeonbuk Province (전북지역에서 호박꽃과실파리(Bactrocera scutellata)의 발생소장과 피해)

  • Kim, Yang-Pyo;Jeon, Sung-Wook;Lee, Sang-Guei;Kim, Kwang-Ho;Choi, Nak-Jung;Hwang, Chang-Yeon
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.299-304
    • /
    • 2010
  • The striped fruit fly, Baetrocera scutellata (Diptera: Tephritidae), is one of the most important pests in Cucurbitaceae plants. Among 6 attractants for B. scutellata used, Cue-lure was shown better effect than the others. Newly emerged adult of B. scutellata had been occurred early June of the year tested. There were two peaks of occurrences of B. scutellata, one was from mid-July to early August and the other was early September suggesting that B. scutellata has two generation a year. The larva of B. seutellata damaging the female flower and stem of the pumpkin was found for the frist time on Korea. The blossoms were damaged and fallen by B. scutellata which were 53.8% of male flower and 30.7% of female flower in the 6 pumpkins. The pumpkin flowers were damaged 51.9% by B. scutellata. Especially thc pumpkin flowers damaged were shown 72.7% (1015/1397 individuals) from August to September. The larva of B. scutellata was found from the Trichosanthes kirilowii on 24 June 2009 in Jinan-gun Jeollabuk-do.

Impaired Taste Associative Memory and Memory Enhancement by Feeding Omija in Parkinson's Disease Fly Model

  • Poudel, Seeta;Lee, Youngseok
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.646-652
    • /
    • 2018
  • Neurodegeneration can result in memory loss in the central nervous system (CNS) and impairment of taste and smell in the peripheral nervous system (PNS). The neurodegeneration seen in Parkinson's disease (PD) is characterized by functional loss of dopaminergic neurons. Recent studies have also found a role for dopaminergic neurons in regulating taste memory rewards in insects. To investigate how taste memories and sugar sensitivity can be affected in PD, we utilized the $DJ-1{\beta}$ mutant fruit fly, $DJ-1{\beta}^{ex54}$, as a PD model. We performed binary choice feeding assays, electrophysiology and taste-mediated memory tests to explore the function of the $DJ-1{\beta}$ gene in terms of sugar sensitivity as well as associative taste memory. We found that PD flies exhibited an impaired ability to discriminate sucrose across a range of sugar concentrations, with normal responses at only very high concentrations of sugar. They also showed an impairment in associative taste memory. We highlight that the taste impairment and memory defect in $DJ-1{\beta}^{ex54}$ can be recovered by the expression of wild-type $DJ-1{\beta}$ gene in the dopaminergic neurons. We also emphasized the role of dopaminergic neurons in restoring taste memory function. This impaired memory property of $DJ-1{\beta}^{ex54}$ flies also allows them to be used as a model system for finding supplementary dietary foods that can improve memory function. Here we provide evidence that the associative taste memory of both control and $DJ-1{\beta}^{ex54}$ flies can be enhanced with dietary supplementation of the medicinal plant, omija.

A Balanced and Unbalanced Analysis of the DNA Matrix Code of The Taegeuk Pattern (태극 패턴 DNA 행렬 코드의 평형과 불평형 해석)

  • Kim, Jeong Su;Lee, Moon Ho
    • Journal of Engineering Education Research
    • /
    • v.21 no.1
    • /
    • pp.77-89
    • /
    • 2018
  • The chromosomes of all the world are the same in all 24 pairs, but the key, skin color and appearance are different. Also, it is the resistance of adult disease, diabetes, cancer. In 1953, Watson, Crick of Cambridge University experimentally discovered a DNA double helix structure, and in 1962, They laureates the Nobel Prize. In 1964, Temin, University of Wisconsin, USA, experimentally identified the ability to copy gene information from RNA to DNA and received the Nobel Prize in 1975. In this paper, we analyzed 24 pairs of DNA chromosomes using mathematical matrices based on the combination order sequence of four groups, and designed the Taegeuk pattern genetic code for the first time in the world. In the case of normal persons, the middle Yin-Yang taegeuk is designed as a block circulant Jacket matrix in DNA, and the left-right and upper-lower pairs of east-west and north-south rulings are designed as pair complementary matrices. If (C U: A G) chromosomes are unbalanced, that is, people with disease or inheritance become squashed squirming patterns. In 2017, Professor Michel Young was awarded a Nobel by presenting a biological clock and experimentally explained the bio-imbalance through a yellow fruit fly experiment.This study proved mathematical matrices for balanced and unbalanced RNA.

Disease model organism for Parkinson disease: Drosophila melanogaster

  • Aryal, Binod;Lee, Youngseok
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.250-258
    • /
    • 2019
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective and progressive loss of dopaminergic neurons. Genetic and environmental risk factors are associated with this disease. The genetic factors are composed of approximately 20 genes, such as SNCA, parkin, PTEN-induced kinase1 (pink1), leucine-rich repeat kinase 2 (LRRK2), ATP13A2, MAPT, VPS35, and DJ-1, whereas the environmental factors consist of oxidative stress-induced toxins such as 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), rotenone, and paraquat. The analyses of their functions and mechanisms have provided important insights into the disease process, which has demonstrated that these factors cause oxidative damage and mitochondrial dysfunction. The most invaluable studies have been performed using disease model organisms, such as mice, fruit flies, and worms. Among them, Drosophila melanogaster has emerged as an excellent model organism to study both environmental and genetic factors and provide insights to the pathways relevant for PD pathogenesis, facilitating development of therapeutic strategies. In this review, we have focused on the fly model organism to summarize recent progress, including pathogenesis, neuroprotective compounds, and newer approaches.