References
- Forno LS (1996) Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 55, 259-272 https://doi.org/10.1097/00005072-199603000-00001
- Whitton P (2007) Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol 150, 963-976 https://doi.org/10.1038/sj.bjp.0707167
-
Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the
${\alpha}$ -synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047 https://doi.org/10.1126/science.276.5321.2045 -
Singleton A, Farrer M, Johnson J et al (2003)
${\alpha}$ -Synuclein locus triplication causes Parkinson's disease. Science 302, 841-841 https://doi.org/10.1126/science.1090278 - Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607 https://doi.org/10.1016/j.neuron.2004.11.005
- Zimprich A, Benet-Pages A, Struhal W et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89, 168-175 https://doi.org/10.1016/j.ajhg.2011.06.008
- Wakabayashi K and Takahashi H (2007) Pathology of familial Parkinson's disease. Brain Nerve 59, 851-864
- Chartier-Harlin M-C, Dachsel JC, Vilarino-Guell C et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89, 398-406 https://doi.org/10.1016/j.ajhg.2011.08.009
- Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608 https://doi.org/10.1038/33416
- Bonifati V, Rizzu P, Squitieri F et al (2003) DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24, 159-160 https://doi.org/10.1007/s10072-003-0108-0
- Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160 https://doi.org/10.1126/science.1096284
- Koroglu C, Baysal L, Cetinkaya M, Karasoy H and Tolun A (2013) DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord 19, 320-324 https://doi.org/10.1016/j.parkreldis.2012.11.006
- Quadri M, Fang M, Picillo M et al (2013) Mutation in the SYNJ1 Gene Associated with Autosomal Recessive, Early-Onset P arkinsonism. Hum Mutat 34, 1208-1215 https://doi.org/10.1002/humu.22373
- Ramirez A, Heimbach A, Grundemann J et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38, 1184-1190 https://doi.org/10.1038/ng1884
- Greenamyre JT and Hastings TG (2004) Parkinson's--divergent causes, convergent mechanisms. Science 304, 1120-1122 https://doi.org/10.1126/science.1098966
- Bilen J and Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39, 153-171 https://doi.org/10.1146/annurev.genet.39.110304.095804
- Feany MB and Bender WW (2000) A Drosophila model of Parkinson's disease. Nature 404, 394-398 https://doi.org/10.1038/35006074
- Pareek G, Thomas RE and Pallanck LJ (2018) Loss of the Drosophila m-AAA mitochondrial protease paraplegin results in mitochondrial dysfunction, shortened lifespan, and neuronal and muscular degeneration. Cell Death Dis 9, 304 https://doi.org/10.1038/s41419-018-0365-8
- Kroemer G, Galluzzi L and Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87, 99-163 https://doi.org/10.1152/physrev.00013.2006
- Kann O and Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292, C641-C657 https://doi.org/10.1152/ajpcell.00222.2006
-
Mosharov EV, Larsen KE, Kanter E et al (2009) Interplay between cytosolic dopamine, calcium, and
${\alpha}$ -synuclein causes selective death of substantia nigra neurons. Neuron 62, 218-229 https://doi.org/10.1016/j.neuron.2009.01.033 -
Dehay B, Bourdenx M, Gorry P et al (2015) Targeting
${\alpha}$ -synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurol 14, 855-866 https://doi.org/10.1016/S1474-4422(15)00006-X - Blum D, Torch S, Lambeng N et al (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 65, 135-172 https://doi.org/10.1016/S0301-0082(01)00003-X
- Perier C, Bove J, Wu D-C et al (2007) Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease. Proc Natl Acad Sci U S A 104, 8161-8166 https://doi.org/10.1073/pnas.0609874104
- Abou-Sleiman PM, Muqit MM and Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci 7, 207-219 https://doi.org/10.1038/nrn1868
- Trushina E and McMurray C (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145, 1233-1248 https://doi.org/10.1016/j.neuroscience.2006.10.056
- Blesa J and Przedborski S (2014) Parkinson's disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8, 155 https://doi.org/10.3389/fnana.2014.00155
- Mizuno Y, Sone N and Saitoh T (1987) Effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J Neurochem 48, 1787-1793 https://doi.org/10.1111/j.1471-4159.1987.tb05737.x
- Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV and Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3, 1301-1306 https://doi.org/10.1038/81834
- Lee K-S, Huh S, Lee S et al (2018) Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc Natl Acad Sci U S A 115, E8844-E8853 https://doi.org/10.1073/pnas.1721136115
-
Norris KL, Hao R, Chen L-F et al (2015) Convergence of parkin, PINK1 and
${\alpha}$ -synuclein on stress-induced mitochondrial morphological remodelling. J Neurochem 290, 13862-13874 -
Ludtmann MH, Angelova PR, Horrocks MH et al (2018)
${\alpha}$ -synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. Nat Commun 9, 2293 https://doi.org/10.1038/s41467-018-04422-2 - Blandini F and Armentero MT (2012) Animal models of Parkinson's disease. FEBS J 279, 1156-1166 https://doi.org/10.1111/j.1742-4658.2012.08491.x
- Chen AY, Xia S, Wilburn P and Tully T (2014) Olfactory deficits in an alpha-synuclein fly model of Parkinson's disease. PLoS One 9, e97758 https://doi.org/10.1371/journal.pone.0097758
-
Khair A, Salema B, Dhanushkodi NR et al (2018) Silencing of Glucocerebrosidase Gene in Drosophila Enhances the Aggregation of Parkinson's Disease Associated
${\alpha}$ -Synuclein Mutant A53T and Affects Locomotor Activity. Front Neurosci 12, 81 https://doi.org/10.3389/fnins.2018.00081 -
Davis MY, Trinh K, Thomas RE et al (2016) Glucocerebrosidase deficiency in Drosophila results in
${\alpha}$ -synucleinindependent protein aggregation and neurodegeneration. PLoS Genet 12, e1005944 https://doi.org/10.1371/journal.pgen.1005944 -
Miura E, Hasegawa T, Konno M et al (2014) VPS35 dysfunction impairs lysosomal degradation of
${\alpha}$ -synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease. Neurobiol Dis 71, 1-13 https://doi.org/10.1016/j.nbd.2014.07.014 -
Suzuki M, Fujikake N, Takeuchi T et al (2015) Glucocerebrosidase deficiency accelerates the accumulation of proteinase K-resistant
${\alpha}$ -synuclein and aggravates neurodegeneration in a Drosophila model of Parkinson's disease. Hum Mol Genet 24, 6675-6686 https://doi.org/10.1093/hmg/ddv372 -
Devi L, Raghavendran V, Prabhu BM, Avadhani NG and Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of
${\alpha}$ -synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283, 9089-9100 https://doi.org/10.1074/jbc.M710012200 - Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB and Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 100, 4078-4083 https://doi.org/10.1073/pnas.0737556100
- Park J, Kim SY, Cha G-H, Lee SB, Kim S and Chung J (2005) Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 361, 133-139 https://doi.org/10.1016/j.gene.2005.06.040
- Cha G-H, Kim S, Park J et al (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 102, 10345-10350 https://doi.org/10.1073/pnas.0500346102
- Yang Y, Gehrke S, Imai Y et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103, 10793-10798 https://doi.org/10.1073/pnas.0602493103
- Lehmann S, Jardine J, Garrido-Maraver J, Loh SH and Martins LM (2017) Folinic acid is neuroprotective in a fly model of Parkinson's disease associated with pink1 mutations. Matters 3, e201702000009
- Moisoi N, Fedele V, Edwards J and Martins LM (2014) Loss of PINK1 enhances neurodegeneration in a mouse model of Parkinson's disease triggered by mitochondrial stress. Neuropharmacology 77, 350-357 https://doi.org/10.1016/j.neuropharm.2013.10.009
- Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162 https://doi.org/10.1038/nature04779
- Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157 https://doi.org/10.1038/nature04788
- Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166 https://doi.org/10.1038/nature04779
- Narendra D, Tanaka A, Suen D-F and Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183, 795-803 https://doi.org/10.1083/jcb.200809125
- Kim Y, Park J, Kim S et al (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377, 975-980 https://doi.org/10.1016/j.bbrc.2008.10.104
- Hayashi T, Ishimori C, Takahashi-Niki K et al (2009) DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem Biophys Res Commun 390, 667-672 https://doi.org/10.1016/j.bbrc.2009.10.025
- Zhang L, Shimoji M, Thomas B et al (2005) Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 14, 2063-2073 https://doi.org/10.1093/hmg/ddi211
- Heo JY, Park JH, Kim SJ et al (2012) DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex I assembly. PLoS One 7, e32629 https://doi.org/10.1371/journal.pone.0032629
- Lucas JI and Marin I (2006) A new evolutionary paradigm for the Parkinson disease gene DJ-1. Mol Biol Evol 24, 551-561 https://doi.org/10.1093/molbev/msl186
- Menzies FM, Yenisetti SC and Min K-T (2005) Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol 15, 1578-1582 https://doi.org/10.1016/j.cub.2005.07.036
- Meulener M, Whitworth AJ, Armstrong-Gold CE et al (2005) Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol 15, 1572-1577 https://doi.org/10.1016/j.cub.2005.07.064
- Irrcher I, Aleyasin H, Seifert E et al (2010) Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet 19, 3734-3746 https://doi.org/10.1093/hmg/ddq288
- Meulener MC, Xu K, Thomson L, Ischiropoulos H and Bonini NM (2006) Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc Natl Acad Sci U S A 103, 12517-12522 https://doi.org/10.1073/pnas.0601891103
- Poudel S and Lee Y (2018) Impaired Taste Associative Memory and Memory Enhancement by Feeding Omija in Parkinson's Disease Fly Model. Mol Cells 41, 646-652 https://doi.org/10.14348/molcells.2018.0014
- Wallings R, Manzoni C and Bandopadhyay R (2015) Cellular processes associated with LRRK2 function and dysfunction. FEBS J 282, 2806-2826 https://doi.org/10.1111/febs.13305
- Karuppagounder SS, Xiong Y, Lee Y et al (2016) LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-mediated neurotoxicity. J Chem Neuroanat 76, 90-97 https://doi.org/10.1016/j.jchemneu.2016.01.007
- Liu Z, Wang X, Yu Y et al (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A 105, 2693-2698 https://doi.org/10.1073/pnas.0708452105
- Yang D, Thomas JM, Li T, Lee Y, Liu Z and Smith W (2017) Drosophila hep pathway mediates Lrrk2-induced neurodegeneration. Biochem Cell Biol 96, 441-449 https://doi.org/10.1139/bcb-2017-0262
- Schober A (2004) Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissues Res 318, 215-224 https://doi.org/10.1007/s00441-004-0938-y
- Tieu K (2011) A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb Perspect Med 1, a009316 https://doi.org/10.1101/cshperspect.a009316
- Abolaji AO, Adedara AO, Adie MA, Vicente-Crespo M and Farombi EO (2018) Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridineinduced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem Biophys Res Commun 503, 1042-1048 https://doi.org/10.1016/j.bbrc.2018.06.114
- Trinh K, Andrews L, Krause J et al (2010) Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson's disease through an NRF2-dependent mechanism. J Neurosci 30, 5525-5532 https://doi.org/10.1523/JNEUROSCI.4777-09.2010
- Srivastava P and Panda D (2007) Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J 274, 4788-4801 https://doi.org/10.1111/j.1742-4658.2007.06004.x
- Sherer TB, Betarbet R, Testa CM et al (2003) Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci 23, 10756-10764 https://doi.org/10.1523/JNEUROSCI.23-34-10756.2003
- Vos M, Esposito G, Edirisinghe JN et al (2012) Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336, 1306-1310 https://doi.org/10.1126/science.1218632
- Mena MA, Casarejos MJ, Solano RM and de Yebenes JG (2009) Half a century of L-DOPA. Curr Top Med Chem 9, 880-893
- Payami H and Factor SA (2014) Promise of pharmacogenomics for drug discovery, treatment and prevention of Parkinson's disease. A perspective. Neurotherapeutics 11, 111-116 https://doi.org/10.1007/s13311-013-0237-y
- Saini N and Schaffner W (2010) Zinc supplement greatly improves the condition of parkin mutant Drosophila. Biol Chem 391, 513-518 https://doi.org/10.1515/bc.2010.052
- Guo J, Cui Y, Liu Q et al (2018) Piperine ameliorates SCA17 neuropathology by reducing ER stress. Mol Neurodegener 13, 4 https://doi.org/10.1186/s13024-018-0236-x
-
Lee MK, Stirling W, Xu Y et al (2002) Human
${\alpha}$ -synuclein-harboring familial Parkinson's disease-linked Ala-53$\rightarrow$ Thr mutation causes neurodegenerative disease with${\alpha}$ -synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A 99, 8968-8973 https://doi.org/10.1073/pnas.132197599 -
Dalfo E, Gomez-Isla T, Rosa J et al (2004) Abnormal
${\alpha}$ -synuclein interactions with Rab proteins in${\alpha}$ -synuclein A30P transgenic mice. J Neuropathol Exp Neuron 63, 302-313 https://doi.org/10.1093/jnen/63.4.302 -
Lu X-H, Fleming SM, Meurers B et al (2009) Bacterial artificial chromosome transgenic mice expressing a truncated mutant Parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant
${\alpha}$ -synuclein. J Neurosci 29, 1962-1976 https://doi.org/10.1523/JNEUROSCI.5351-08.2009 - Gasser T (2001) Genetics of Parkinson's disease. J neurol 248, 833-840 https://doi.org/10.1007/s004150170066
-
Kumar R, Jangir DK, Verma G et al (2017) S-nitrosylation of UCHL1 induces its structural instability and promotes
${\alpha}$ -synuclein aggregation. Sci Rep 7, 44558 https://doi.org/10.1038/srep44558 - Tran HH, Dang SN, Nguyen TT et al (2018) Drosophila Ubiquitin C-Terminal Hydrolase Knockdown Model of Parkinson's Disease. Sci Rep 8, 4468 https://doi.org/10.1038/s41598-018-22804-w
- Kelm-Nelson CA, Brauer AF, Barth KJ et al (2018) Characterization of early-onset motor deficits in the Pink1-/- mouse model of Parkinson disease. Brain Res 1680, 1-12 https://doi.org/10.1016/j.brainres.2017.12.002
- Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P and Vandenberghe W (2018) Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. eLife 7, e35878 https://doi.org/10.7554/eLife.35878
- Rousseaux MW, Marcogliese PC, Qu D et al (2012) Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proc Natl Acad Sci U S A 109, 15918-15923 https://doi.org/10.1073/pnas.1205102109
- Li Y, Liu W, Oo TF et al (2009) Mutant LRRK2 R1441G BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci 12, 826-828 https://doi.org/10.1038/nn.2349
-
Usenovic M, Tresse E, Mazzulli JR, Taylor JP and Krainc D (2012) Deficiency of ATP13A2 leads to lysosomal dysfunction,
${\alpha}$ -synuclein accumulation, and neurotoxicity. J Neurosci 32, 4240-4246 https://doi.org/10.1523/JNEUROSCI.5575-11.2012 - Giovannone B, Tsiaras WG, de la Monte S et al (2009) GIGYF2 gene disruption in mice results in neurodegeneration and altered insulin-like growth factor signaling. Hum Mol Genet 18, 4629-4639 https://doi.org/10.1093/hmg/ddp430
- Kim M, Semple I, Kim B et al (2015) Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 11, 1358-1372 https://doi.org/10.1080/15548627.2015.1063766
- Martins LM, Morrison A, Klupsch K et al (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24, 9848-9862 https://doi.org/10.1128/MCB.24.22.9848-9862.2004
- Tain LS, Chowdhury RB, Tao RN et al (2009) Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death Differ 16, 1118-1125 https://doi.org/10.1038/cdd.2009.23
- Zhou Q, Yen A, Rymarczyk G et al (2016) Impairment of PARK14-dependent Ca 2+ signalling is a novel determinant of Parkinson's disease. Nat Commun 7, 10332 https://doi.org/10.1038/ncomms10332
- Chiu C-C, Yeh T-H, Lu C-S et al (2017) PARK14 PLA2G6 mutants are defective in preventing rotenone-induced mitochondrial dysfunction, ROS generation and activation of mitochondrial apoptotic pathway. Oncotarget 8, 79046-79060 https://doi.org/10.18632/oncotarget.20893
- Vingill S, Brockelt D, Lancelin C et al (2016) Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J 35, 2008-2025 https://doi.org/10.15252/embj.201593585
- Burchell VS, Nelson DE, Sanchez-Martinez A et al (2013) The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 16, 1257-1265 https://doi.org/10.1038/nn.3489
- MacLeod DA, Rhinn H, Kuwahara T et al (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77, 425-439 https://doi.org/10.1016/j.neuron.2012.11.033
- Tang F-L, Liu W, Hu J-X et al (2015) VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep 12, 1631-1643 https://doi.org/10.1016/j.celrep.2015.08.001
- Yim Y-I, Sun T, Wu L-G et al (2010) Endocytosis and clathrin-uncoating defects at synapses of auxilin knockout mice. Proc Natl Acad Sci U S A 107, 4412-4417 https://doi.org/10.1073/pnas.1000738107
- Song L, He Y, Ou J et al (2017) Auxilin underlies progressive locomotor deficits and dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Cell Rep 18, 1132-1143 https://doi.org/10.1016/j.celrep.2017.01.005
- Pan P-Y, Li X, Wang J et al (2017) Parkinson's Disease-Associated LRRK2 Hyperactive Kinase mutant Disrupts Synaptic Vesicle Trafficking in Ventral midbrain Neurons. J Neurosci 47, 11366-11376
- Schulze KL, Broadie K, Perin MS and Bellen HJ (1995) Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80, 311-320 https://doi.org/10.1016/0092-8674(95)90414-X