DOI QR코드

DOI QR Code

Disease model organism for Parkinson disease: Drosophila melanogaster

  • Aryal, Binod (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Lee, Youngseok (Department of Bio and Fermentation Convergence Technology, Kookmin University)
  • Received : 2018.09.03
  • Accepted : 2018.11.29
  • Published : 2019.04.30

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective and progressive loss of dopaminergic neurons. Genetic and environmental risk factors are associated with this disease. The genetic factors are composed of approximately 20 genes, such as SNCA, parkin, PTEN-induced kinase1 (pink1), leucine-rich repeat kinase 2 (LRRK2), ATP13A2, MAPT, VPS35, and DJ-1, whereas the environmental factors consist of oxidative stress-induced toxins such as 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), rotenone, and paraquat. The analyses of their functions and mechanisms have provided important insights into the disease process, which has demonstrated that these factors cause oxidative damage and mitochondrial dysfunction. The most invaluable studies have been performed using disease model organisms, such as mice, fruit flies, and worms. Among them, Drosophila melanogaster has emerged as an excellent model organism to study both environmental and genetic factors and provide insights to the pathways relevant for PD pathogenesis, facilitating development of therapeutic strategies. In this review, we have focused on the fly model organism to summarize recent progress, including pathogenesis, neuroprotective compounds, and newer approaches.

Keywords

References

  1. Forno LS (1996) Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 55, 259-272 https://doi.org/10.1097/00005072-199603000-00001
  2. Whitton P (2007) Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol 150, 963-976 https://doi.org/10.1038/sj.bjp.0707167
  3. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the ${\alpha}$-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047 https://doi.org/10.1126/science.276.5321.2045
  4. Singleton A, Farrer M, Johnson J et al (2003) ${\alpha}$-Synuclein locus triplication causes Parkinson's disease. Science 302, 841-841 https://doi.org/10.1126/science.1090278
  5. Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607 https://doi.org/10.1016/j.neuron.2004.11.005
  6. Zimprich A, Benet-Pages A, Struhal W et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89, 168-175 https://doi.org/10.1016/j.ajhg.2011.06.008
  7. Wakabayashi K and Takahashi H (2007) Pathology of familial Parkinson's disease. Brain Nerve 59, 851-864
  8. Chartier-Harlin M-C, Dachsel JC, Vilarino-Guell C et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89, 398-406 https://doi.org/10.1016/j.ajhg.2011.08.009
  9. Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608 https://doi.org/10.1038/33416
  10. Bonifati V, Rizzu P, Squitieri F et al (2003) DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24, 159-160 https://doi.org/10.1007/s10072-003-0108-0
  11. Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160 https://doi.org/10.1126/science.1096284
  12. Koroglu C, Baysal L, Cetinkaya M, Karasoy H and Tolun A (2013) DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord 19, 320-324 https://doi.org/10.1016/j.parkreldis.2012.11.006
  13. Quadri M, Fang M, Picillo M et al (2013) Mutation in the SYNJ1 Gene Associated with Autosomal Recessive, Early-Onset P arkinsonism. Hum Mutat 34, 1208-1215 https://doi.org/10.1002/humu.22373
  14. Ramirez A, Heimbach A, Grundemann J et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38, 1184-1190 https://doi.org/10.1038/ng1884
  15. Greenamyre JT and Hastings TG (2004) Parkinson's--divergent causes, convergent mechanisms. Science 304, 1120-1122 https://doi.org/10.1126/science.1098966
  16. Bilen J and Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39, 153-171 https://doi.org/10.1146/annurev.genet.39.110304.095804
  17. Feany MB and Bender WW (2000) A Drosophila model of Parkinson's disease. Nature 404, 394-398 https://doi.org/10.1038/35006074
  18. Pareek G, Thomas RE and Pallanck LJ (2018) Loss of the Drosophila m-AAA mitochondrial protease paraplegin results in mitochondrial dysfunction, shortened lifespan, and neuronal and muscular degeneration. Cell Death Dis 9, 304 https://doi.org/10.1038/s41419-018-0365-8
  19. Kroemer G, Galluzzi L and Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87, 99-163 https://doi.org/10.1152/physrev.00013.2006
  20. Kann O and Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292, C641-C657 https://doi.org/10.1152/ajpcell.00222.2006
  21. Mosharov EV, Larsen KE, Kanter E et al (2009) Interplay between cytosolic dopamine, calcium, and ${\alpha}$-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218-229 https://doi.org/10.1016/j.neuron.2009.01.033
  22. Dehay B, Bourdenx M, Gorry P et al (2015) Targeting ${\alpha}$-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurol 14, 855-866 https://doi.org/10.1016/S1474-4422(15)00006-X
  23. Blum D, Torch S, Lambeng N et al (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 65, 135-172 https://doi.org/10.1016/S0301-0082(01)00003-X
  24. Perier C, Bove J, Wu D-C et al (2007) Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease. Proc Natl Acad Sci U S A 104, 8161-8166 https://doi.org/10.1073/pnas.0609874104
  25. Abou-Sleiman PM, Muqit MM and Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci 7, 207-219 https://doi.org/10.1038/nrn1868
  26. Trushina E and McMurray C (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145, 1233-1248 https://doi.org/10.1016/j.neuroscience.2006.10.056
  27. Blesa J and Przedborski S (2014) Parkinson's disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8, 155 https://doi.org/10.3389/fnana.2014.00155
  28. Mizuno Y, Sone N and Saitoh T (1987) Effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J Neurochem 48, 1787-1793 https://doi.org/10.1111/j.1471-4159.1987.tb05737.x
  29. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV and Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3, 1301-1306 https://doi.org/10.1038/81834
  30. Lee K-S, Huh S, Lee S et al (2018) Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc Natl Acad Sci U S A 115, E8844-E8853 https://doi.org/10.1073/pnas.1721136115
  31. Norris KL, Hao R, Chen L-F et al (2015) Convergence of parkin, PINK1 and ${\alpha}$-synuclein on stress-induced mitochondrial morphological remodelling. J Neurochem 290, 13862-13874
  32. Ludtmann MH, Angelova PR, Horrocks MH et al (2018) ${\alpha}$-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. Nat Commun 9, 2293 https://doi.org/10.1038/s41467-018-04422-2
  33. Blandini F and Armentero MT (2012) Animal models of Parkinson's disease. FEBS J 279, 1156-1166 https://doi.org/10.1111/j.1742-4658.2012.08491.x
  34. Chen AY, Xia S, Wilburn P and Tully T (2014) Olfactory deficits in an alpha-synuclein fly model of Parkinson's disease. PLoS One 9, e97758 https://doi.org/10.1371/journal.pone.0097758
  35. Khair A, Salema B, Dhanushkodi NR et al (2018) Silencing of Glucocerebrosidase Gene in Drosophila Enhances the Aggregation of Parkinson's Disease Associated ${\alpha}$-Synuclein Mutant A53T and Affects Locomotor Activity. Front Neurosci 12, 81 https://doi.org/10.3389/fnins.2018.00081
  36. Davis MY, Trinh K, Thomas RE et al (2016) Glucocerebrosidase deficiency in Drosophila results in ${\alpha}$-synucleinindependent protein aggregation and neurodegeneration. PLoS Genet 12, e1005944 https://doi.org/10.1371/journal.pgen.1005944
  37. Miura E, Hasegawa T, Konno M et al (2014) VPS35 dysfunction impairs lysosomal degradation of ${\alpha}$-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease. Neurobiol Dis 71, 1-13 https://doi.org/10.1016/j.nbd.2014.07.014
  38. Suzuki M, Fujikake N, Takeuchi T et al (2015) Glucocerebrosidase deficiency accelerates the accumulation of proteinase K-resistant ${\alpha}$-synuclein and aggravates neurodegeneration in a Drosophila model of Parkinson's disease. Hum Mol Genet 24, 6675-6686 https://doi.org/10.1093/hmg/ddv372
  39. Devi L, Raghavendran V, Prabhu BM, Avadhani NG and Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of ${\alpha}$-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283, 9089-9100 https://doi.org/10.1074/jbc.M710012200
  40. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB and Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 100, 4078-4083 https://doi.org/10.1073/pnas.0737556100
  41. Park J, Kim SY, Cha G-H, Lee SB, Kim S and Chung J (2005) Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 361, 133-139 https://doi.org/10.1016/j.gene.2005.06.040
  42. Cha G-H, Kim S, Park J et al (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 102, 10345-10350 https://doi.org/10.1073/pnas.0500346102
  43. Yang Y, Gehrke S, Imai Y et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103, 10793-10798 https://doi.org/10.1073/pnas.0602493103
  44. Lehmann S, Jardine J, Garrido-Maraver J, Loh SH and Martins LM (2017) Folinic acid is neuroprotective in a fly model of Parkinson's disease associated with pink1 mutations. Matters 3, e201702000009
  45. Moisoi N, Fedele V, Edwards J and Martins LM (2014) Loss of PINK1 enhances neurodegeneration in a mouse model of Parkinson's disease triggered by mitochondrial stress. Neuropharmacology 77, 350-357 https://doi.org/10.1016/j.neuropharm.2013.10.009
  46. Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162 https://doi.org/10.1038/nature04779
  47. Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157 https://doi.org/10.1038/nature04788
  48. Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166 https://doi.org/10.1038/nature04779
  49. Narendra D, Tanaka A, Suen D-F and Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183, 795-803 https://doi.org/10.1083/jcb.200809125
  50. Kim Y, Park J, Kim S et al (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377, 975-980 https://doi.org/10.1016/j.bbrc.2008.10.104
  51. Hayashi T, Ishimori C, Takahashi-Niki K et al (2009) DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem Biophys Res Commun 390, 667-672 https://doi.org/10.1016/j.bbrc.2009.10.025
  52. Zhang L, Shimoji M, Thomas B et al (2005) Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 14, 2063-2073 https://doi.org/10.1093/hmg/ddi211
  53. Heo JY, Park JH, Kim SJ et al (2012) DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex I assembly. PLoS One 7, e32629 https://doi.org/10.1371/journal.pone.0032629
  54. Lucas JI and Marin I (2006) A new evolutionary paradigm for the Parkinson disease gene DJ-1. Mol Biol Evol 24, 551-561 https://doi.org/10.1093/molbev/msl186
  55. Menzies FM, Yenisetti SC and Min K-T (2005) Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol 15, 1578-1582 https://doi.org/10.1016/j.cub.2005.07.036
  56. Meulener M, Whitworth AJ, Armstrong-Gold CE et al (2005) Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol 15, 1572-1577 https://doi.org/10.1016/j.cub.2005.07.064
  57. Irrcher I, Aleyasin H, Seifert E et al (2010) Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet 19, 3734-3746 https://doi.org/10.1093/hmg/ddq288
  58. Meulener MC, Xu K, Thomson L, Ischiropoulos H and Bonini NM (2006) Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc Natl Acad Sci U S A 103, 12517-12522 https://doi.org/10.1073/pnas.0601891103
  59. Poudel S and Lee Y (2018) Impaired Taste Associative Memory and Memory Enhancement by Feeding Omija in Parkinson's Disease Fly Model. Mol Cells 41, 646-652 https://doi.org/10.14348/molcells.2018.0014
  60. Wallings R, Manzoni C and Bandopadhyay R (2015) Cellular processes associated with LRRK2 function and dysfunction. FEBS J 282, 2806-2826 https://doi.org/10.1111/febs.13305
  61. Karuppagounder SS, Xiong Y, Lee Y et al (2016) LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-mediated neurotoxicity. J Chem Neuroanat 76, 90-97 https://doi.org/10.1016/j.jchemneu.2016.01.007
  62. Liu Z, Wang X, Yu Y et al (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A 105, 2693-2698 https://doi.org/10.1073/pnas.0708452105
  63. Yang D, Thomas JM, Li T, Lee Y, Liu Z and Smith W (2017) Drosophila hep pathway mediates Lrrk2-induced neurodegeneration. Biochem Cell Biol 96, 441-449 https://doi.org/10.1139/bcb-2017-0262
  64. Schober A (2004) Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissues Res 318, 215-224 https://doi.org/10.1007/s00441-004-0938-y
  65. Tieu K (2011) A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb Perspect Med 1, a009316 https://doi.org/10.1101/cshperspect.a009316
  66. Abolaji AO, Adedara AO, Adie MA, Vicente-Crespo M and Farombi EO (2018) Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridineinduced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem Biophys Res Commun 503, 1042-1048 https://doi.org/10.1016/j.bbrc.2018.06.114
  67. Trinh K, Andrews L, Krause J et al (2010) Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson's disease through an NRF2-dependent mechanism. J Neurosci 30, 5525-5532 https://doi.org/10.1523/JNEUROSCI.4777-09.2010
  68. Srivastava P and Panda D (2007) Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J 274, 4788-4801 https://doi.org/10.1111/j.1742-4658.2007.06004.x
  69. Sherer TB, Betarbet R, Testa CM et al (2003) Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci 23, 10756-10764 https://doi.org/10.1523/JNEUROSCI.23-34-10756.2003
  70. Vos M, Esposito G, Edirisinghe JN et al (2012) Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336, 1306-1310 https://doi.org/10.1126/science.1218632
  71. Mena MA, Casarejos MJ, Solano RM and de Yebenes JG (2009) Half a century of L-DOPA. Curr Top Med Chem 9, 880-893
  72. Payami H and Factor SA (2014) Promise of pharmacogenomics for drug discovery, treatment and prevention of Parkinson's disease. A perspective. Neurotherapeutics 11, 111-116 https://doi.org/10.1007/s13311-013-0237-y
  73. Saini N and Schaffner W (2010) Zinc supplement greatly improves the condition of parkin mutant Drosophila. Biol Chem 391, 513-518 https://doi.org/10.1515/bc.2010.052
  74. Guo J, Cui Y, Liu Q et al (2018) Piperine ameliorates SCA17 neuropathology by reducing ER stress. Mol Neurodegener 13, 4 https://doi.org/10.1186/s13024-018-0236-x
  75. Lee MK, Stirling W, Xu Y et al (2002) Human ${\alpha}$-synuclein-harboring familial Parkinson's disease-linked Ala-53$\rightarrow$ Thr mutation causes neurodegenerative disease with ${\alpha}$-synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A 99, 8968-8973 https://doi.org/10.1073/pnas.132197599
  76. Dalfo E, Gomez-Isla T, Rosa J et al (2004) Abnormal ${\alpha}$-synuclein interactions with Rab proteins in ${\alpha}$-synuclein A30P transgenic mice. J Neuropathol Exp Neuron 63, 302-313 https://doi.org/10.1093/jnen/63.4.302
  77. Lu X-H, Fleming SM, Meurers B et al (2009) Bacterial artificial chromosome transgenic mice expressing a truncated mutant Parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant ${\alpha}$-synuclein. J Neurosci 29, 1962-1976 https://doi.org/10.1523/JNEUROSCI.5351-08.2009
  78. Gasser T (2001) Genetics of Parkinson's disease. J neurol 248, 833-840 https://doi.org/10.1007/s004150170066
  79. Kumar R, Jangir DK, Verma G et al (2017) S-nitrosylation of UCHL1 induces its structural instability and promotes ${\alpha}$-synuclein aggregation. Sci Rep 7, 44558 https://doi.org/10.1038/srep44558
  80. Tran HH, Dang SN, Nguyen TT et al (2018) Drosophila Ubiquitin C-Terminal Hydrolase Knockdown Model of Parkinson's Disease. Sci Rep 8, 4468 https://doi.org/10.1038/s41598-018-22804-w
  81. Kelm-Nelson CA, Brauer AF, Barth KJ et al (2018) Characterization of early-onset motor deficits in the Pink1-/- mouse model of Parkinson disease. Brain Res 1680, 1-12 https://doi.org/10.1016/j.brainres.2017.12.002
  82. Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P and Vandenberghe W (2018) Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. eLife 7, e35878 https://doi.org/10.7554/eLife.35878
  83. Rousseaux MW, Marcogliese PC, Qu D et al (2012) Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proc Natl Acad Sci U S A 109, 15918-15923 https://doi.org/10.1073/pnas.1205102109
  84. Li Y, Liu W, Oo TF et al (2009) Mutant LRRK2 R1441G BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci 12, 826-828 https://doi.org/10.1038/nn.2349
  85. Usenovic M, Tresse E, Mazzulli JR, Taylor JP and Krainc D (2012) Deficiency of ATP13A2 leads to lysosomal dysfunction, ${\alpha}$-synuclein accumulation, and neurotoxicity. J Neurosci 32, 4240-4246 https://doi.org/10.1523/JNEUROSCI.5575-11.2012
  86. Giovannone B, Tsiaras WG, de la Monte S et al (2009) GIGYF2 gene disruption in mice results in neurodegeneration and altered insulin-like growth factor signaling. Hum Mol Genet 18, 4629-4639 https://doi.org/10.1093/hmg/ddp430
  87. Kim M, Semple I, Kim B et al (2015) Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 11, 1358-1372 https://doi.org/10.1080/15548627.2015.1063766
  88. Martins LM, Morrison A, Klupsch K et al (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24, 9848-9862 https://doi.org/10.1128/MCB.24.22.9848-9862.2004
  89. Tain LS, Chowdhury RB, Tao RN et al (2009) Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death Differ 16, 1118-1125 https://doi.org/10.1038/cdd.2009.23
  90. Zhou Q, Yen A, Rymarczyk G et al (2016) Impairment of PARK14-dependent Ca 2+ signalling is a novel determinant of Parkinson's disease. Nat Commun 7, 10332 https://doi.org/10.1038/ncomms10332
  91. Chiu C-C, Yeh T-H, Lu C-S et al (2017) PARK14 PLA2G6 mutants are defective in preventing rotenone-induced mitochondrial dysfunction, ROS generation and activation of mitochondrial apoptotic pathway. Oncotarget 8, 79046-79060 https://doi.org/10.18632/oncotarget.20893
  92. Vingill S, Brockelt D, Lancelin C et al (2016) Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J 35, 2008-2025 https://doi.org/10.15252/embj.201593585
  93. Burchell VS, Nelson DE, Sanchez-Martinez A et al (2013) The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 16, 1257-1265 https://doi.org/10.1038/nn.3489
  94. MacLeod DA, Rhinn H, Kuwahara T et al (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77, 425-439 https://doi.org/10.1016/j.neuron.2012.11.033
  95. Tang F-L, Liu W, Hu J-X et al (2015) VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep 12, 1631-1643 https://doi.org/10.1016/j.celrep.2015.08.001
  96. Yim Y-I, Sun T, Wu L-G et al (2010) Endocytosis and clathrin-uncoating defects at synapses of auxilin knockout mice. Proc Natl Acad Sci U S A 107, 4412-4417 https://doi.org/10.1073/pnas.1000738107
  97. Song L, He Y, Ou J et al (2017) Auxilin underlies progressive locomotor deficits and dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Cell Rep 18, 1132-1143 https://doi.org/10.1016/j.celrep.2017.01.005
  98. Pan P-Y, Li X, Wang J et al (2017) Parkinson's Disease-Associated LRRK2 Hyperactive Kinase mutant Disrupts Synaptic Vesicle Trafficking in Ventral midbrain Neurons. J Neurosci 47, 11366-11376
  99. Schulze KL, Broadie K, Perin MS and Bellen HJ (1995) Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80, 311-320 https://doi.org/10.1016/0092-8674(95)90414-X