• Title/Summary/Keyword: Front-Loading

Search Result 140, Processing Time 0.024 seconds

Effect of Loading Split-Ring Resonators in a Microstrip Antenna Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.120-122
    • /
    • 2015
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna (MSA) based on surface wave suppression. The back radiation of the MSA is significantly reduced by using the meandered ground plane edges and placing split-ring resonators (SRRs) in the middle of the meandered slots. By loading SRRs near the center of the meandered ground plane edges, some parts of the diffracted back-lobe power density can be reduced further. Compared to the F/B ratio of a conventional MSA with a full ground plane of the same size, an improved F/B ratio of 18 dB has been achieved experimentally for our proposed MSA.

Experimental Study on the Structural Safety of the Tractor Front-End Loader Against Impact Load

  • Park, Young-Jun;Shim, Sung-Bo;Nam, Ju-Seok
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.153-160
    • /
    • 2016
  • Purpose: This study was conducted to experimentally investigate the structural safety of and identify critical locations in a front-end loader under impact loads. Methods: Impact and static tests were conducted on a commonly used front-end loader mounted on a tractor. In the impact test, the bucket of the front-end loader with maximum live load was raised to its maximum lift height and was allowed to free fall to a height of 500 mm above the ground where it was stopped abruptly. For the static test, the bucket with maximum live load was raised and held at the maximum lift height, median height, and a height of 500 mm from the ground. Strain gages were attached at twenty-three main locations on the front-end loader, and the maximum stresses and strains were measured during respective impact and static tests. Results: Stresses and strains at the same location on the loader were higher in the impact test than in the static test, for most of measurement locations. This indicated that the front-end loader was put under a severe environment during impact loading. The safety factors for stresses were higher than 1.0 at all locations during impact and static tests. Conclusions: Since the lowest safety factor was higher than 1.0, the front-end loader was considered as structurally safe under impact loads. However, caution must be exercised at the locations having relatively low safety factors because failure may occur at these locations under high impact loads. These important design locations were identified to be the bucket link elements and the connection elements between the tractor frame and front-end loader. A robust design is required for these elements because of their high failure probability caused by excessive impact stress.

Toughness and Crack Propagation Behavior of The Interfacial Crack in Composite Materials (복합재료내의 계면균열의 인성과 균열진전 거동)

  • Choi, Byung-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.291-298
    • /
    • 2003
  • Interfacial crack problems between fiber and matrix in composite materials are discussed. A series of interfacial crack initiation and propagation experiments are conducted using the biaxial loading device for various mode-mixes. Normal crack opening displacement (NCOD) is measured near crack front by a crack opening interferometry and used for extracting fracture parameters. From mixed mode interfacial crack initiation experiments, large increase in toughness with shear components is observed. Initial velocity of crack propagation is very dependent upon the mode-mixes. It increased with positive mode-mix due to the increase of stress singularities ahead of crack front and decreased with negative mode-mix resulting from the increase of the degree of compressive stress behind the crack front. Crack propagation was less accelerated with positive mode-mix than the negative mode-mix.

  • PDF

A Study on the Bucket Loading Characteristics for Wheel-loader Loading Automation (휠로더 굴착 자동화를 위한 버킷 부하특성 연구)

  • Seo, Dong-Kwan;Seo, Hyun-Jae;Kang, In-Pil;Kwon, Young-Min;Lee, Sang-Hoon;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1332-1340
    • /
    • 2009
  • The front end wheel loader is widely used for the loading of materials in mining and construction fields. It has repetitive digging, loading and dumping procedures. The bucket is subjected to large resistance force from the soil during scooping. We considered the soil reaction force characteristics from scooping procedure, the protection by overload and automatic scooping mode algorithm. The main topic of this paper is the analysis of the soil reaction force characteristics. The analysis of soil mechanics is carried out and the developed soil model is verified by experimental results from the simplified experimental equipment. A simplified model of the soil shape and bucket trajectory is used to determine the scooping direction based on an estimation of the resistance force applied on the bucket during the scooping motion. In the future, this model will be used for the generation of an appropriate path for the wheel loader automation.

Injury Prevention Strategies of Landing Motion of Jumping Front Kick to Apply Free Style Poomsae of Taekwondo (태권도 자유 품새에 적용하기 위한 뛰어 앞차기 착지 동작의 상해 예방 전략)

  • Ryu, Sihyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.37-49
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the injury factors of Taekwondo jumping kick during landing phase according to the experience of injury and to suggest a stable landing movement applicable to free style Poomsae. Method: The participants were non-injury group (NG), n = 5, age: 20.5±0.9 years; height: 171.6±3.6 cm; body weight: 65.7±4.4 kg; career: 5.0±2.7 years. Injury group (IG), n = 9, age: 21.0±0.8 years; height: 170.9±4.6 cm; body weight: 67.1±7.0 kg; career: 8.6±5.0 years. The variables are impact force, loading rate, vertical stiffness, lower limb joint angle, stability, balance, and muscle activity in the landing phase. Results: NG was statistically larger than IG in the gluteus medius (p<.05). The impact force, loading rate and vertical stiffness decreased as the landing foot angle, the ROM of lower limb joint angle and COM displacement increased (p<.05). Conclusion: Based on the results, it means that the landing foot angle plays an important role in the impact reduction during landing phase. It is required the training to adjust the landing foot angle.

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

The Load Distribution Characteristics of Pile Group under Lateral Loading (수평력을 받는 무리말뚝의 하중분담특성)

  • Ahn, Byungchul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2010
  • This paper analyzed the characteristics of p-multiplier and the load distribution of H-pile group installed in weathered soil under horizontal loading. The results of this study conducted in pile arrangement ($2{\times}3$, $3{\times}3$), the pile center to center spacing (2D, 4D, 6D), and soil density (relative density: 40%, 80%) were drawn as follows. As to the average horizontal loading applied to each pile in pile groups, the fewer number of piles was, the larger average horizontal resistance became. As the result of analysis on p-y curves of single piles and pile groups according to the pile distance and the soil density, as the pile spacing was increased from 2D to 6D, the interaction coefficients of pile group showed 0.85~0.94 (piles in the front row), 0.57~0.79 (piles in the middle row), and 0.60~0.71 (piles in the rear row) in the loose ground and showed 0.76~0.82 (piles in the front row), 0.58~0.73 (piles in the middle row), and 0.53~0.70 (piles in the rear row) in the dense ground. As above, the wider pile distance was, the larger interaction coefficient value was shown among piles. In addition, piles in the front row showed bigger interaction coefficients than that of piles in the middle and back row.

Wave-Front Error Reconstruction Algorithm Using Moving Least-Squares Approximation (이동 최소제곱 근사법을 이용한 파면오차 계산 알고리즘)

  • Yeon, Jeoung-Heum;Kang, Gum-Sil;Youn, Heong-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.359-365
    • /
    • 2006
  • Wave-front error(WFE) is the main parameter that determines the optical performance of the opto-mechanical system. In the development of opto-mechanics, WFE due to the main loading conditions are set to the important specifications. The deformation of the optical surface can be exactly calculated thanks to the evolution of numerical methods such as the finite element method(FEM). To calculate WFE from the deformation results of FEM, another approximation of the optical surface deformation is required. It needs to construct additional grid or element mesh. To construct additional mesh is troublesomeand leads to transformation error. In this work, the moving least-squares approximation is used to reconstruct wave front error It has the advantage of accurate approximation with only nodal data. There is no need to construct additional mesh for approximation. The proposed method is applied to the examples of GOCI scan mirror in various loading conditions. The validity is demonstrated through examples.