• 제목/요약/키워드: Front side member

검색결과 57건 처리시간 0.021초

등가 드로오비드를 적용한 Front Side Member의 성형해석 및 충돌평가 (Forming Analysis of the Front Side Member using Equivalent Draw-bead for Crashworthness Assessment)

  • 송정한;김기풍;김승호;허훈;김현섭;홍석길
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.320-327
    • /
    • 2003
  • This paper is concerned with forming analysis of Front Side Members and effects of the forming analysis on crash analysis of an auto-body. For efficient forming analysis, equivalent draw-bead restraining forces are calculated with ABAQUS/Standard and then used as the boundary condition in forming simulation. In order to demonstrate the validity of the forming analysis, the thickness variation in the numerical simulation result is compared quantitatively with the one in the real product. Forming histories obtained kom the forming analysis are utilized as the initial condition of the crash analysis for accurate assessment of the crashworthiness. Crashworthiness such as the load-carrying capacity, crash mode and the energy absorption is evaluated and investigated for the identification of forming effects.

비드 형상 최적화를 이용한 전방 측면 부재의 충돌 최적화 연구 (A Study on Crashworthiness Optimization of Front Side Members using Bead Shape Optimization)

  • 이준영;이정석;이용훈;배복수;김규학;임홍재
    • 대한기계학회논문집A
    • /
    • 제36권3호
    • /
    • pp.331-337
    • /
    • 2012
  • 본 논문은 위상최적화 기법을 이용하여 전방측면 부재를 최적화 한다. 전방측면 부재에 최적화를 진행하기 전에 사각단면 부재에 최적화를 진행한다. 목적함수는 1 차 좌굴 계수가 길이방향으로 최소화되도록 설정한다. 설계변수는 법선방향으로 질점의 이동이다. 사각단면부재의 반응표면법을 이용한 최적화 모델과 위상최적화 모델에 대해 충돌해석을 수행한다. 위상최적화 기법을 검증하기 위해 두 결과를 비교한다. 그 결과 위상최적화 기법을 충돌해석에 적용할 수 있다는 것을 확인하고 실제차량의 전방측면부재에 적용한다. 결과적으로 전방측면 부재는 최적화되고 내충격성이 향상한다.

980MPa급 초고장력 강판의 자동차 프런트 사이드 멤버 부품 성형에 관한 연구 (A Study on the Forming of Automotive Front Side Member Part with Ultra High Strength Steel of DP980)

  • 차승훈;이상곤;고대철;김병민
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.39-44
    • /
    • 2009
  • This paper is concerned with forming technology of an automotive front side member part with ultra high strength steel sheet of DP980. The forming technology considered in this paper is the draw & form type, which installs the upper pad and lower pad to produce the complicated shape of ultra high strength steel sheet. In order to produce sound product, comparison between form type and draw & form type and between draw type and draw & form type are investigated by FE-analysis. FE-analysis is carried out with commercial sheet metal forming analysis S/W, DYNAFORM. It was shown from FE-analysis that the draw & form type satisfied the required specifications such as the dimensional accuracy and soundness of automotive front side member part. The effectiveness of the analytical result was verified by the experiment. From this investigation, the draw & form type is proved to be able to supply useful forming technology in forming ultra high strength steel.

자동차용 프론트 사이드 멤버의 일체복합성형해석 및 보강판재의 위치결정 (Determination of Position for Reinforcement Blank at Simultaneous Forming Analysis of Automotive Front Side Member)

  • 윤석진;김헌영;김관회;윤재정;송종호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.178-182
    • /
    • 2008
  • Automotive manufacturers lay their eyes on the new manufacturing technologies because of the strengthened competition. Among them, a simultaneous forming is one of the innovative forming technologies to be able to reduce production time and cost. Several parts can be simultaneous manufactured by process, while the conventional stamping demands the same number of die sets with the number of parts. In this study, the automotive front side member was manufactured by the simultaneous forming. The position and the size of initial blank were determined by forming analysis and try-outs, and the blank movement during the forming was controlled by introducing the pilot pin.

  • PDF

고강도 차체부품 제작 기술에 대한 연구 (The Study of Manufacturing Technology for Front Side Member Lower)

  • 박상언;김동규;이규현;김광희;이문용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 2009
  • In roll forming process, a sheet metal is continuously progressively formed into a product with required cross-section and longitudinal shape, such as a circular tube with required diameter, wall-thickness and straightness, by passing through a series of forming rolls in arranged in tandem. In recent years, that process is often applied to the bumper rail in the automotive industries. In this study, a optimal front side member manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle. And also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF

프런트 사이드 멤버의 테일러드 블랭크 제조방식에 따른 성능 평가에 관한 연구 (A Study on the Evaluation of Front Side Member in Tailored Blank Manufacturing Process)

  • 최이천;최치수;오영근;권순용;신철수;라도훈;노승강
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.143-148
    • /
    • 2000
  • This paper describes how to make tailored blanks of front side member that were composed of high strength steel and TRIP(TRansformation Induced Plasticity) steel for weight reduction and improvement of crash load. Tailored blanks made by laser and mash-seam welding were compared with non-tailored blanks made by spot welding. Static compression tests were performed for performance comparison of each sample. Front side members made by tailored blank were superior to those made by spot welding in the initial, but those results were inverse in the last. Average load of tailored blank in six-angle type was better than that of rectangular type.

  • PDF

프런트 사이드 멤버의 테일러드 블랭크 제조방식에 따른 성능 평가에 관한 연구 (A Study on the Evaluation of Front Side Member in Tailored Blank Manufacturing Process)

  • 최이천;최치수;오영근;권순용;신철수;라도훈;노승강
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.200-205
    • /
    • 2001
  • This paper describes how to make tailored blanks of front side member that were composed of high strength steel and TRIP(TRansformation Induced Plasticity) steel for weight reduction and improvement of crash load. Tailored blanks made by laser and mash-seam welding were compared with non-tailored blanks made by spot welding. Static compression tests were performed for performance comparison of each sample. Front side members made by tailored blank were superior to those made by spot welding in the initial, but those results were inverse in the last. Average load of tailored blank in six-angle type was better than that of rectangular type.

  • PDF

차체구조용 박육부재의 단면형상변화에 따른 에너지흡수 특성 (Energy Absorbing Characteristics of Thin-Walled Members for Vehicles Having Various Section Shapes)

  • 차천석;정진오;이길성;백경윤;양인영
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.177-182
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a case of front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/min) was conducted by using UTM for form different types of members which have different cross section shapes; single hat, single cap, double cap, and double hat. The single hat shaped section member has the typical standard section, which the double hat shape section has a symmetry in the center to have more stiffness. As a result of the test, the energy absorbing characteristic was analyzed for different section shapes. It turned out that the change of section shape influence the absorbing energy, the mean collapse load and the maximum collapse load, and the relation between the change of section shape and the collapse mode.

저속충돌조건에서 효과적인 충돌에너지흡수를 위한 알루미늄 크래쉬 박스의 비드형상 효과 (Effect of Bead Shape in Aluminum Crash Box for Effective Impact Energy Absorption Under Low- Velocity Impact Condition)

  • 이찬주;이선봉;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1155-1162
    • /
    • 2012
  • 알루미늄 크래쉬 박스는 저속충돌조건에서 프론트 사이드 멤버를 변형을 방지하기 위한 부품이다. 본 연구에서는 저속충돌조건에서 비드형상이 알루미늄 크래쉬 박스의 충돌성능에 미치는 영향을 분석하였다. Edge concave, surface convex 와 surface concave 타입의 비드형상들에 대한 충돌해석 및 실험을 수행하여 비드가 없는 normal 타입의 알루미늄 크래쉬 박스의 충돌성능과 비교분석하였다. 충돌성능은 저속충돌조건에서 크래쉬 박스의 초기 최대하중 및 충돌에너지 흡수능으로 평가하였다. 이를 검증하기 위해 알루미늄 크래쉬 박스와 결합된 프론트 사이드 멤버에 대해 저속충돌실험 수행하고, 이를 분석하였다. Surface concave 타입의 비드가 삽입된 알루미늄 크래쉬 박스 경우, 프론트 사이드 멤버의 변형을 방지할 수 있음을 확인하였다.