• Title/Summary/Keyword: Fringes

Search Result 195, Processing Time 0.022 seconds

AN INTERFERENCE FRINGE REMOVAL METHOD BASED ON MULTI-SCALE DECOMPOSITION AND ADAPTIVE PARTITIONING FOR NVST IMAGES

  • Li, Yongchun;Zheng, Sheng;Huang, Yao;Liu, Dejian
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.2
    • /
    • pp.49-55
    • /
    • 2019
  • The New Vacuum Solar Telescope (NVST) is the largest solar telescope in China. When using CCDs for imaging, equal-thickness fringes caused by thin-film interference can occur. Such fringes reduce the quality of NVST data but cannot be removed using standard flat fielding. In this paper, a correction method based on multi-scale decomposition and adaptive partitioning is proposed. The original image is decomposed into several sub-scales by multi-scale decomposition. The region containing fringes is found and divided by an adaptive partitioning method. The interference fringes are then filtered by a frequency-domain Gaussian filter on every partitioned image. Our analysis shows that this method can effectively remove the interference fringes from a solar image while preserving useful information.

Visual Measurement of Rotational Displacements by Using Two Different Moire Fringes Simultaneously Generated by Repeated Sinusoidal Gratings (반복사인격자에서 동시에 생기는 두 가지 무아레 무늬를 이용한 회전변위의 가시적 측정)

  • Jeong, Youn-Hong;Oh, Jeong-Hyo;Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.302-309
    • /
    • 2008
  • We present the precise visual measurement method of rotational displacements using two different moire fringes simultaneously generated by repeated sinusoidal gratings. We investigate the variation of moire fringes depending on rotational displacements through computer simulation and experiment using a rotator in detail. The moire fringes are composed of the wide linear fringe part with a long period and the narrow linear fringe part with a short period. These parts are superior to the angle detection of more than 12 degrees and less than 12 degree, respectively. Additionally, the method can be visually used in the determination of the rotational direction by observing the moire fringe's direction.

디지탈 영상처리를 이용한 광탄성 프린지의 세선화처리

  • 백태현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.127-133
    • /
    • 2001
  • Photoelastic isochromatic fringes related to the difference of principal stresses have some bandwidth whose light intensities are not constant and unsymmetrical in experimental image. Hence it is difficult to measure fringe order accurately at a data point by visual observation. In this study, the method of fringe sharpening, which can extract sharpened lines from both full-and half-order fringes by digital image processing, is developed. To test the method, various simple photoelastic fringe patterns are simulated and their image are processed to yield sharpened lines. The method is than applied to general problem such as image of a circular disk compressed by concentrated loads and a cylinder subjected to internal pressure. The procedure is proved to be capable of extracting sharpened lines accurately from photoelastic isochromatic fringes.

Simply Modified Biosensor for the Detection of Human IgG Based on Protein AModified Porous Silicon Interferometer

  • Park, Jae-Hyun;Koh, Young-Dae;Ko, Young-Chun;Sohn, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1593-1597
    • /
    • 2009
  • A biosensor has been developed based on induced wavelength shifts in the Fabry-Perot fringes in the visible reflection spectrum of appropriately derivatized thin films of porous silicon semiconductors. Porous silicon (PSi) was generated by an electrochemical etching of silicon wafer using two electrode configurations in aqueous ethanolic HF solution. Porous silicon displayed Fabry-Perot fringe patterns whose reflection maxima varied spatially across the porous silicon. The sensor system studied consisted of a mono layer of porous silicon modified with Protein A. The system was probed with various fragments of an aqueous Human Immunoglobin G (Ig G) analyte. The sensor operated by measurement of the Fabry-Perot fringes in the white light reflection spectrum from the porous silicon layer. Molecular binding was detected as a shift in wavelength of these fringes.

Improvement of Accuracy in Moire-type Laser Encoder Using Four Point Method (4점법을 이용한 모아레식 레이저 엔코우더의 정밀 정확도 향상)

  • Jeon, Byeong Wook;Park, Too Won;Lee, Myung Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.19-25
    • /
    • 1995
  • Presently, along with the advance of high-technology, the precise measurement of linear displacement has become a staple requirement, and consequently the high resolution with submicron order has also been required in precise positioning and carriaging. In this paper, we advance a propose on a new type of laser encoder based on the principle of phase analysis of the moire fringes from superimposed two gratings. The phase angle as an information of displacement can be accurately calculated by detecting the change in brighness at four points of the fringes. The actual application of four point method to the moire fringes is performed thru microcomputer for general purpose, and the measuring procedure is also studied in this research. As an experimental result, in the case of using 20 .mu. m-pitch gratings, it is validated that this method has the resolution of 0.01 .mu. m and the accuracy of .+-. 0.15 .mu. m over the setting range of 100mm.

  • PDF

Digital Image Processing Technique for Photoelastic Isochromatic Fringe Sharpening (광탄성 등색프린지의 세선처리를 위한 디지탈 영상처리 기법)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.220-230
    • /
    • 1993
  • Photoelastic isochromatic fringes related to the difference of principal stresses have some bandwidth whose light intensities are not constant and asymmetrical in experimental images. Hence, it is difficult to measure fringe order accurately at a data point by visual observation. In this study, a method of fringe sharpening, which can extract shapened lines from both full-and half-order fringes by digital image processing, is developed. To test the method, various simple photelastic fringe patterns are simulated and their images are processed to yield sharpened lines. The method is then applied to general problems such as images of a circular disk compressed by diametrically concentrated loads and a circular cylinder sybject to internal pressure. The procedure is proved to be capable of extracting sharpened lines accurately from photoelastic isochromatic fringes.

  • PDF

Automatic measurement of micro-displacements using moir fringes obtained by the superposition of self-imaging elongated circular gratings (자체결상된 늘려진 원형격자(elongated circular grating)의 무아레 무늬를 이용한 마이크로 변위의 자동측정)

  • 이상일;백승선;조재홍
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.276-277
    • /
    • 2003
  • 계측분야에서 물체의 변형정도를 알아내는 광학적인 방법으로 물체에 격자를 부착하여 격자의 변위에 의한 무아레 무늬(moir fringes)를 이용하여 물체의 변형정도를 알아내는 방법이 있다. 최근에 본 그룹에서 물체의 변형정도를 피치간격으로 측정할 수 있고, 한 피치 내의 세밀한 부분은 유사한 두 개의 격자가 겹쳐서 형성되는 버니어 무아레 무늬를 이용하여 세부적인 변위 정도를 알아낼 수 있는 방법을 제안하였다. (중략)

  • PDF

Normalization of the Misaligned Moire Pattern Using Fourier Transform (푸리에 변환을 이용한 미스얼라인된 Moire 무늬의 표준화)

  • Park, T.W.;Morimoto, Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.386-394
    • /
    • 1995
  • The fringes developed by misalignment, an application of Moire method measuring small deformation of specimen, was transformed to frequency function. After that, theory of normalization was applied to derive the equations explaining the relation of the deformation and Moire fringes. Above all, the equations were produced to explain the rotation and increasing of fringes. In addition to that, the relation of fringe number and strain was illustated with the equations deduced from frequency function and geometrical method respectively. These two expressions were more effective than the used ones owing to the one can accommodate the other.

  • PDF

Hybrid Photoelastic Stress Analysis Around a Central Crack Tip in a Tensile Loaded Plate Using Isochromatic Data (등색프린지 데이터를 이용한 인장하중 판재 중앙 균열선단 주위의 하이브리드 광탄성 응력장 해석)

  • Baek, Tae-Hyun;Chen, Lei
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1200-1207
    • /
    • 2007
  • An experimental test is presented for photoelastic stress analysis around a crack tip in tensile loaded plate. The hybrid method coupling photoelastsic fringe inputs calculated by finite element method and complex variable formulations involving conformal mappings and analytical continuity is used to calculate full-field stress around the crack tip in uniaxially loaded, finite width tensile plate. In order to accurately compare calculated fringes with experimental ones, both actual and regenerated photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Regenerated fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within three percent compared with ones obtained by empirical equation and finite element analysis.

Stress Distribution in the Vicinity of a Crack Tip in a Plate under Tensile Load Using Displacement Data of Finite Element Method (유한요소 변위값을 이용한 인장하중 판재 균열선단 주위의 응력분포 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.84-91
    • /
    • 2008
  • Due to the complexity of the engineering problems, it is difficult to obtain directly the stress field around the crack tip by theoretical derivation. In the paper, the hybrid method is employed to calculate full-field stress around the crack tip in uni-axially leaded finite width tensile plate, using the displacement data of given points calculated by finite element method as input data. The method uses complex variable formulations involving conformal mappings and analytical continuity. In order to accurately compare calculated fringes with experimental ones, both actual and reconstructed photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Reconstructed fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within a few percent compared with ones obtained by empirical equation and finite element analysis.