• 제목/요약/키워드: Friction Spring

검색결과 176건 처리시간 0.023초

Seismic protection of the benchmark highway bridge with passive hybrid control system

  • Saha, Arijit;Saha, Purnachandra;Patro, Sanjaya Kumar
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.227-241
    • /
    • 2018
  • The present paper deals with the optimum performance of the passive hybrid control system for the benchmark highway bridge under the six earthquakes ground motion. The investigation is carried out on a simplified finite element model of the 91/5 highway overcrossing located in Southern California. A viscous fluid damper (known as VFD) or non-linear fluid viscous spring damper has been used as a passive supplement device associated with polynomial friction pendulum isolator (known as PFPI) to form a passive hybrid control system. A parametric study is considered to find out the optimum parameters of the PFPI system for the optimal response of the bridge. The effect of the velocity exponent of the VFD and non-linear FV spring damper on the response of the bridge is carried out by considering different values of velocity exponent. Further, the influences of damping coefficient and vibration period of the dampers are also examined on the response of the bridge. To study the effectiveness of the passive hybrid system on the response of the isolated bridge, it is compared with the corresponding PFPI isolated bridges. The investigation showed that passive supplement damper such as VFD or non-linear FV spring damper associated with PFPI system is significantly reducing the seismic response of the benchmark highway bridge. Further, it is also observed that non-linear FV spring damper hybrid system is a more promising strategy in reducing the response of the bridge compared to the VFD associated hybrid system.

비선형 점탄성 스프링 모델을 이용한 플로팅 슬래브 궤도의 동적 거동 해석 (Analysis of Dynamic Behavior of Floating Slab Track Using a Nonlinear Viscoelastic Spring Model)

  • 장승엽;박진철;황성호;김은
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1078-1088
    • /
    • 2012
  • Recently, the vibration and structure-borne noise induced by passing trains are of great concerns, and the floating slab track is highlighted as one of most efficient alternatives to reduce the railway vibration. However, due to the non-linearity and viscosity of rubber spring used in the floating slab track, its dynamic behavior is very complex. In this study, therefore, to simulate the dynamic behavior of floating slab track with a better accuracy, a nonlinear viscoelastic rubber spring model that can be incorporated in commercial finite element analysis codes has been proposed. This model is composed of a combination of elastic spring element, friction element and viscous element, and termed the "generalized friction viscoelastic model(GFVM)". Also, in this study, the method to determine the model parameters of GFVM based on Berg's 5-parameter model was presented. The results of the finite element analysis with this rubber spring model exhibit very good correlation with the test results of a laboratory mock-up test, and the feasibility of GFVM has been verified.

외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석 (Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method)

  • 박일경;김성준;안석민
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구 (A Study on the Analysis of Design Parameters for Development of LSD)

  • 신용호;이동원;신천세
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

공기구동 게이트밸브의 운전 성능평가 방법에 관한 연구 (A Evaluation Method of Operational Performance for Air-operated Gate Valve)

  • 김대웅;박성근;강신철;김양석
    • 한국유체기계학회 논문집
    • /
    • 제12권2호
    • /
    • pp.31-38
    • /
    • 2009
  • The valve performance has been evaluated from the theoretical equation based on design information such as packing thrust, spring preload and friction coefficient(${\mu}$). The accuracy of those data can be lower than that of vendor's initial design data. Especially, the friction coefficient can be degraded with time than the original condition and the valve performance calculated using the previous friction coefficient can not be available. Accordingly, this paper is describing a new performance evaluation method of valve based on diagnostic test data which are acquired from a site valve tested in static and dynamic conditions. Especially, this paper provides a new method using friction coefficient(${\mu}$) which is derived from the diagnostic test data acquired in the valve's design basis condition.

Derivation of the Extended Elastic Stiffness Formula of the Holddown Spring Assembly Comprised of Several Leaves

  • Song, Kee-Nam;Kang, H.S.;Yoon, K.H.
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.328-334
    • /
    • 1999
  • Based on the Euler beam theory and the elastic strain energy method, the elastic stiffness formula of the holddown spring assembly consisting of several leaves was previously derived. Even though the previous formula was known to be useful to estimate the elastic stiffness of the holddown spring assembly, recently it was reported that the elastic stiffness from the previous formula deviated greatly from the test results as the number of leaves was increased. The objective of this study is to extend the previous formula in order to resolve such an increasing deviation when increasing the number of leaves. Additionally, considering the friction forces acting on the interfaces between the leaves, we obtained an extended elastic stiffness formula. The characteristic test and the elastic stiffness analysis on the various kinds of specimens of the holddown spring assembly have been carried out; the validity of the extended formula has been verified by the comparison of their results. As a result of comparisons, it is found that the extended formula is able to evaluate the elastic stiffness of the holddown spring assembly within the maximum error range of + 12%, irrespective of the number of the leaves.

  • PDF

유체감쇠 커플링의 동특성에 관한 이론적 연구(I) (A Theoretical Study on the Dynamic Characteristics of Damping Flexible Coupling(I))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.11-22
    • /
    • 1994
  • The present works are the theoretical results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. It is established the analysis scheme of the multiple-leaf spring, to obtain the static coefficient of stiffness of the coupling. Also, the dynamic coefficient of stiffness and the damping coefficient of the coupling are indentified through the flow analysis for a induced flow of working fluid by the deflection of multiple-leaf springs. This paper dealt with damping contributions by the friction between each plate of the multiple-leaf spring. In this paper, it is found that the dynamic characteristics of the damping flexible coupling are strongly dependent on the stiffness and the number of the multiple-leaf spring, and also vary with the viscosity of working fluid and the vibration speed of the inner star.

  • PDF

마찰을 고려한 차량 동력전달계의 Stick-Slip 현상에 관한 연구 (A Study on the Stick-Slip Phenomenon of the Driveline System of a Vehicle in Consideration of Friction)

  • 윤영진;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제3권4호
    • /
    • pp.19-29
    • /
    • 1995
  • This paper discusses the stick-slip phenomenon of the driveline system of a vehicle in consideration of friction. Friction is operated on the between of flywheel and clutch disk. The expressions for obtaining the results have been derived from the equation of motion of a three degree of freedom frictional torsion vibration system which is made up driving part(engine, flywheel), driven part(clutch, transmission) and dynamic load part(vehicle body) by applying forth-order Rungekutta method. It was found that the great affect parameters of the stick-slip or stick motion were surface pressure force between flywheel and clutch disk, time decay parameter of surface pressure force and 1st torsional spring constant of clutch disk when driveline system had been affected by friction force. The results of this study can be used as basic design data of the clutch system for the ride quality improvement of a car.

  • PDF

단자유도계의 자유진동응답을 이용한 점성 및 마찰감쇠의 식별 (Identification of Viscous and Friction Damping Using Free Vibration Response to SDOF System)

  • 이성경;이웅구
    • 문화기술의 융합
    • /
    • 제5권3호
    • /
    • pp.305-310
    • /
    • 2019
  • 본 연구에서는 단자유도계 구조물의 자유진동응답으로부터 점성감쇠와 마찰감쇠의 영향을 정확히 식별하는 방법을 제시하였다. 제안방법을 검증하기 위해서 우선, 감쇠항으로써 점성감쇠와 마찰감쇠를 동시에 고려한 단자유도계의 변위 및 가속도 자유진동응답에 대해서 기술하였다. 다음으로, 서로 인접하는 두 개의 변위 또는 가속도 피크응답의 진폭을 이용하여 점성감쇠 및 마찰감쇠를 식별하는 관계식을 유도하였다. 마지막으로, 단자유도계에 대한 수치해석을 수행하여 유도된 관계식으로부터 점성감쇠와 마찰감쇠를 식별하는 방법을 검증하였다.

위성 추진시스템 추력기 밸브 내 원형 판스프링 유한요소해석 및 설계 검증시험 (Finite Element Analysis and Design Verification Test of Circular Plate Spring in Thruster Valve of Satellite Propulsion System)

  • 고수정;손미소;김남희;김종학;윤호성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.838-842
    • /
    • 2017
  • 위성용 단일추진제 시스템에 적용되는 핵심부품 중 하나인 추력기 밸브는 솔레노이드 방식을 이용하여 추진제를 공급/차단한다. 밸브에 장착되는 원형 판스프링은 마찰과 반복운동에 의한 위치변형 및 파티클이 없다. 본 연구에서는 원형 판스프링 소재, 두께, 반경을 고정변수로 원형 판스프링 내부 패턴의 너비를 설계변수로 설정하여 유한요소해석 및 검증시험을 하였다. 시험결과 변위에 따른 스프링 상수 k가 선형적인 특성이 나타났다. 원형 판스프링 총면적에 따른 스프링력의 경향성을 통해 원형 판스프링의 설계가 가능함을 확인하였다.

  • PDF