• 제목/요약/키워드: Frequent Pattern Networks

검색결과 15건 처리시간 0.019초

빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축 (Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules)

  • 이헌규;류근호;정두영
    • 정보처리학회논문지D
    • /
    • 제14D권1호
    • /
    • pp.9-20
    • /
    • 2007
  • 유전자들의 그룹은 복잡한 상호작용들을 통해 세포의 기능이 조절되며 이러한 상호작용을 하는 유전자 그룹들을 유전자 조절 네트워크 (GRNs: Gene Regulatory Networks)라고 한다. 이전의 유전자 발현 분석 기법인 군집화와 분류는 단지 상동성에 의한 유전자들 사이의 소속을 결정하는 데에는 유용하나 분자 활동에서의 같은 클래스에서 발견되어지는 유전자들 사이의 조절 관계를 식별할 수 없다. 더욱이 유전자들이 어떻게 연관되는 지와 유전자들이 서로 어떻게 조절하는지에 대한 매커니즘의 이해가 필요하다. 따라서 이 논문에서는 시계열 마이크로어레이 데이터로부터의 유전자들의 조절 관계를 발견하기 위해서 빈발 패턴 마이닝과 연쇄 규칙을 이용한 새로운 접근법을 제안하였다. 이 기법에서는 먼저, 빈발 패턴 마이닝 적용을 위한 적절한 데이터 변환 방법을 제안하였고 FP-growth을 이용하여 유전자 발현 패턴들을 발견한다. 그런 다음, 연쇄 규칙을 이용하여 빈발한 유전자 패턴들로부터 유전자 조절 네트워크를 구축하였다. 마지막으로 제안된 기법의 검증은 공개된 유전자들의 조절 관계와 실험 결과의 일치함을 보임으로써 평가하였다.

CONSTRUCTING GENE REGULATORY NETWORK USING FREQUENT GENE EXPRESSION PATTERN MINING AND CHAIN RULES

  • Park, Hong-Kyu;Lee, Heon-Gyu;Cho, Kyung-Hwan;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.623-626
    • /
    • 2006
  • Group of genes controls the functioning of a cell by complex interactions. These interacting gene groups are called Gene Regulatory Networks (GRNs). Two previous data mining approaches, clustering and classification have been used to analyze gene expression data. While these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rule. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and detect gene expression patterns applying FP-growth algorithm. And then, we construct gene regulatory network from frequent gene patterns using chain rule. Finally, we validated our proposed method by showing that our experimental results are consistent with published results.

  • PDF

협업적 여과 시스템의 성능 향상을 위한 장르 패턴 기반 사용자 클러스터링 (GGenre Pattern based User Clustering for Performance Improvement of Collaborative Filtering System)

  • 최자현;하인애;홍명덕;조근식
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권11호
    • /
    • pp.17-24
    • /
    • 2011
  • 협업적 여과 시스템은 사용자에 대한 클러스터링을 구축한 후, 구축된 클러스터를 기반으로 사용자에게 아이템을 추천한다. 그러나 사용자 클러스터링 구축에 많은 시간이 소요되고, 사용자가 평가한 아이템이 피드백 되었을 경우 재구축이 쉽지 않다. 본 논문에서는 영화 추천 시스템에서의 사용자 클러스터링의 재구축 시간을 단축시키기 위해서 빈발 패턴 네트워크를 이용하여 사용자가 선호하는 장르 패턴을 추출하고, 추출된 패턴을 통해 사용자 클러스터링을 구축한다. 구축된 사용자 클러스터링을 협업적 여과에 적용하여 사용자에게 영화를 추천한다. 사용자 정보가 피드백 될 때, 전통적 협업적 여과는 사용자 클러스터링을 재구축하기 위해 모든 이웃 사용자를 재탐색하여 클러스터링 한다. 하지만 빈발 패턴 네트워크를 이용하여 장르 패턴 기반의 사용자 클러스터링을 적용한 협업적 여과는 사용자 클러스터링을 재구축시 사용자 탐색 공간을 국한시킴으로써 탐색 시간을 줄일 수 있다. 제안하는 장르 패턴기반의 사용자 클러스터링을 통해 사용자 정보가 피드백 된 후 사용자 클러스터를 재구축시 소요되는 시간을 줄일 수 있고, 전통적인 협업적 여과 시스템과 유사한 성능의 추천이 가능하게 되었다.

데이터 스트림에서 가중치 지지도 기반 빈발 패턴 추출 방법 (An Efficient Method for Mining Frequent Patterns based on Weighted Support over Data Streams)

  • 김영희;김원영;김응모
    • 한국산학기술학회논문지
    • /
    • 제10권8호
    • /
    • pp.1998-2004
    • /
    • 2009
  • 다양한 저장 장치의 발달과 네트워크의 발전은 대용량의 데이터를 연속적으로 빠르게 생성한다. 데이터 스트림에서의 데이터 마이닝은 처리 시간 및 메모리 사용에 제한적이다. 또한 생성된 데이터를 한 번의 스캔으로 유용한 패턴을 발견할 수 있어야 하고 정보 변화 가능성이 큰 데이터 속성을 갖는 경우 최근의 정보를 반영한 빠른 분석이 가능해야 한다. 기존의 지지도 기반 마이닝 방법들은 일정 기간 동안 미리 정의된 지지도 이상의 빈발 항목에 대하여만 고려하므로 중요도가 높은 항목들을 간과하는 문제점을 가지고 있다. 본 논문에서는 시간의 변화에 따른 가변성을 고려하여 가중치 지지도를 갖는 데이터 항목들에 대하여 보다 의미 있는 정보를 제공하기 위한 효율적인 빈발패턴 추출 방법을 제안하고자 한다. 제안된 WSFI-Mine(Weighted Support Frequent Itemsets Mine) 방법은 DCT(Data Stream Closed Pattern Tree) 데이터 구조를 이용하여 패쇄 빈발 항목을 탐사한다. 제안된 알고리즘은 DSM-FI와 THUI-Mine 알고리즘과 지지도 변화에 따른 성능을 비교하였고 그 결과 비교 알고리즘 보다 수행 시간이 우수함을 보였고, 빈발 항목을 생성하는 후보 항목의 수를 줄이므로 메모리 사용량을 효율적으로 사용할 수 있음을 보였다.

효율적인 협업적 여과 시스템을 위한 장르 패턴 기반의 사용자 클러스터링 (User Clustering based on Genre Pattern for Efficient Collaborative Filtering System)

  • 최자현;하인애;홍명덕;조근식
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제44차 하계학술발표논문집 19권2호
    • /
    • pp.171-172
    • /
    • 2011
  • 협업적 여과 시스템은 사용자에 대한 클러스터링을 구축한 후, 구축된 클러스터를 기반으로 사용자에게 영화를 추천한다. 하지만 사용자 클러스터링 구축에 많은 시간이 소요되고, 사용자가 평가한 영화가 피드백이 되었을 경우 재구축이 쉽지 않다. 본 논문에서는 사용자 클러스터링의 재구축을 용이하게 하기 위해 빈발패턴 네트워크를 이용하여 클러스터링을 구축하고, 이를 협업적 여과 시스템에 적용하여 영화를 추천한다. 구축된 클러스터를 통해 사용자 클러스터를 재구축시 소요되는 시간 비용을 줄이면서, 전통적인 협업적 여과 시스템과 유사한 성능의 추천이 가능하게 되었다.

  • PDF

Risk Communication on Social Media during the Sewol Ferry Disaster

  • Song, Minsun;Jung, Kyujin;Kim, Jiyoung Ydun;Park, Han Woo
    • Journal of Contemporary Eastern Asia
    • /
    • 제18권1호
    • /
    • pp.189-216
    • /
    • 2019
  • The frequent occurrence of overwhelming disasters necessitates risk communication systems capable of operating effectively in disaster contexts. Few studies have examined risk communication networks during disasters through social networking services (SNS). This study therefore investigates the patterns of risk communication by comparing Korean and international networks based on the social amplification of risk communication in the context of the Sewol ferry disaster (SFD). In addition, differences in language use and patterns between Korean and international contexts are identified through a semantic analysis using KrKwick, NodeXL, and UCINET. The SFD refers to the sinking of the ferry while carrying 476 people, mostly secondary school students. The results for interpersonal risk communication reveal that the structure of the Korean risk communication network differed from that of the international network. The Korean network was more fragmented, and its clustering was more sparsely knitted based on the impact and physical proximity of the disaster. Semantic networks imply that the physical distance from the disaster affected the content of risk communication, as well as the network pattern.

컨테이너 터미널의 무선 네트워크 분석과 서비스 품질 향상 방안 (Analysis of Wireless Network in Freight Container Terminal and Methods for Service Quality Enhancement)

  • 한승호;박현성;김종덕;김용진
    • 한국통신학회논문지
    • /
    • 제34권3B호
    • /
    • pp.235-246
    • /
    • 2009
  • 컨테이너 터미널과 같은 대규모 야외 산업 현장에 IEEE 802.11 기술을 적용하여 무선 네트워크를 구성하는 사례가 늘고 있다. 이러한 네트워크는 기존 가정, 사무실, 학교 등에서 사용 중인 IEEE 802.11 무선 네트워크에 비해 넓은 서비스 범위, 단말의 잦은 이동, 통신 안정성에 대한 높은 요구 등을 특징으로 하고 있다. 이러한 네트워크의 중요성은 증가하고 있지만 이에 대한 실증적 분석 및 평가를 수행한 기존 연구는 찾기 어려우며 이로 인해 이들 네트워크에서 발생할 수 있는 문제들에 대한 구체적 이해가 부족하다. 우리는 여러 차례의 현장 조사 및 실험을 통해 컨테이너 터미널의 무선 네트워크에 대한 실증적 분석을 수행하였다. 분석을 통해 대상 네트워크는 재전송율이 50% 이상일 정도로 안정성이 떨어지며 단말 이동 시 통신 단절 현상이 자주 발생함을 확인하였다. 이러한 품질 저하나 장애의 원인을 밝히고 이를 극복하거나 완화시킬 수 있는 방안들은 제안한다. 제시한 방안에는 무선 메쉬 기술의 도입, 위치 정보 및 이동 패턴 등을 활용한 핸드오프, 신호 세기 및 채널 조정 등이 있다. 향후 유사연구를 위해 무선 네트워크 분석을 위해 적용한 실험 방법론, 사용한 실험 도구와 그 한계점 등도 설명하였다.

A Review of Machine Learning Algorithms for Fraud Detection in Credit Card Transaction

  • Lim, Kha Shing;Lee, Lam Hong;Sim, Yee-Wai
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.31-40
    • /
    • 2021
  • The increasing number of credit card fraud cases has become a considerable problem since the past decades. This phenomenon is due to the expansion of new technologies, including the increased popularity and volume of online banking transactions and e-commerce. In order to address the problem of credit card fraud detection, a rule-based approach has been widely utilized to detect and guard against fraudulent activities. However, it requires huge computational power and high complexity in defining and building the rule base for pattern matching, in order to precisely identifying the fraud patterns. In addition, it does not come with intelligence and ability in predicting or analysing transaction data in looking for new fraud patterns and strategies. As such, Data Mining and Machine Learning algorithms are proposed to overcome the shortcomings in this paper. The aim of this paper is to highlight the important techniques and methodologies that are employed in fraud detection, while at the same time focusing on the existing literature. Methods such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), naïve Bayesian, k-Nearest Neighbour (k-NN), Decision Tree and Frequent Pattern Mining algorithms are reviewed and evaluated for their performance in detecting fraudulent transaction.

Building Energy Time Series Data Mining for Behavior Analytics and Forecasting Energy consumption

  • Balachander, K;Paulraj, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.1957-1980
    • /
    • 2021
  • The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information processing are commonly used to quantify gigantic building activity data steps to boost the activity efficiency of the building energy systems. Here, some smart data mining models are offered to measure, and predict the time series for energy in order to expose different ephemeral principles for using energy. Such considerations illustrate the use of machines in relation to time, such as day hour, time of day, week, month and year relationships within a family unit, which are key components in gathering and separating the effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is necessary to determine the multiple relations through the usage of different appliances from simultaneous information flows. In comparison, specific relations among interval-based instances where multiple appliances use continue for certain duration are difficult to determine. In order to resolve these difficulties, an unsupervised energy time-series data clustering and a frequent pattern mining study as well as a deep learning technique for estimating energy use were presented. A broad test using true data sets that are rich in smart meter data were conducted. The exact results of the appliance designs that were recognized by the proposed model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 99.61%, for 25%, 50%, and 75%, respectively.

Ad Hoc 네트워크 기반의 가변 지오캐스팅 (Variable Geocasting based on Ad Hoc Networks)

  • 이철승;이준
    • 한국정보통신학회논문지
    • /
    • 제10권8호
    • /
    • pp.1401-1406
    • /
    • 2006
  • 최근 산업 및 연구단체에서 이동 Ad-hoc망에 대한 관심이 높아지고 있다. 기존 연구들은 라우팅에 초점을 맞추고 있었던 것에 반해 본 논문에서는 이들 연구의 결과로 형성된 Ad-hoc망을 실제로 이용하기 위한 응용으로 가변지오캐스팅 방법을 제안한다. 지오캐스팅 프로토콜 목적은 특별한 지오캐스팅 영역에 위치한 노드들의 그룹에 패킷 데이터를 전송하는 것이다. 본 논문에서는 Ad-hoc기반의 이동 네트워크 환경에서 지오캐스트 서비스를 지원하는 기존연구에 데이터 전송경로의 비 최적화, 빈번한 지오캐스트 전송트리의 재구성으로 인한 오버헤드, 서비스단절의 문제를 해결하기 위해 이동형태기반의 가변지오캐스팅 기법을 제안한다. 가변지오캐스팅 기법은 서비스범위를 목적지 노드의 이동성에 따라 가변적으로 설정하고 자원예약기법과 다양한 실험을 통해 이동노드의 이동성에 따른 접근성 및 네트워크 오버헤드를 줄여 성능평가 하였다.