• Title/Summary/Keyword: Frequent Pattern Networks

Search Result 15, Processing Time 0.039 seconds

Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules (빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축)

  • Lee, Heon-Gyu;Ryu, Keun-Ho;Joung, Doo-Young
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.9-20
    • /
    • 2007
  • Groups of genes control the functioning of a cell by complex interactions. Such interactions of gene groups are tailed Gene Regulatory Networks(GRNs). Two previous data mining approaches, clustering and classification, have been used to analyze gene expression data. Though these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rules. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and gene expression patterns we detected by applying the FP-growth algorithm. Next, we construct a gene regulatory network from frequent gene patterns using chain rules. Finally, we validate our proposed method through our experimental results, which are consistent with published results.

CONSTRUCTING GENE REGULATORY NETWORK USING FREQUENT GENE EXPRESSION PATTERN MINING AND CHAIN RULES

  • Park, Hong-Kyu;Lee, Heon-Gyu;Cho, Kyung-Hwan;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.623-626
    • /
    • 2006
  • Group of genes controls the functioning of a cell by complex interactions. These interacting gene groups are called Gene Regulatory Networks (GRNs). Two previous data mining approaches, clustering and classification have been used to analyze gene expression data. While these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rule. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and detect gene expression patterns applying FP-growth algorithm. And then, we construct gene regulatory network from frequent gene patterns using chain rule. Finally, we validated our proposed method by showing that our experimental results are consistent with published results.

  • PDF

GGenre Pattern based User Clustering for Performance Improvement of Collaborative Filtering System (협업적 여과 시스템의 성능 향상을 위한 장르 패턴 기반 사용자 클러스터링)

  • Choi, Ja-Hyun;Ha, In-Ay;Hong, Myung-Duk;Jo, Geun-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.17-24
    • /
    • 2011
  • Collaborative filtering system is the clustering about user is built and then based on that clustering results will recommend the preferred item to the user. However, building user clustering is time consuming and also once the users evaluate and give feedback about the film then rebuilding the system is not simple. In this paper, genre pattern of movie recommendation systems is being used and in order to simplify and reduce time of rebuilding user clustering. A Frequent pattern networks is used and then extracts user preference genre patterns and through that extracted patterns user clustering will be built. Through built the clustering for all neighboring users to collaborative filtering is applied and then recommends movies to the user. When receiving user information feedback, traditional collaborative filtering is to rebuild the clustering for all neighbouring users to research and do the clustering. However by using frequent pattern Networks, through user clustering based on genre pattern, collaborative filtering is applied and when rebuilding user clustering inquiry limited by search time can be reduced. After receiving user information feedback through proposed user clustering based on genre pattern, the time that need to spent on re-establishing user clustering can be reduced and also enable the possibility of traditional collaborative filtering systems and recommendation of a similar performance.

An Efficient Method for Mining Frequent Patterns based on Weighted Support over Data Streams (데이터 스트림에서 가중치 지지도 기반 빈발 패턴 추출 방법)

  • Kim, Young-Hee;Kim, Won-Young;Kim, Ung-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1998-2004
    • /
    • 2009
  • Recently, due to technical developments of various storage devices and networks, the amount of data increases rapidly. The large volume of data streams poses unique space and time constraints on the data mining process. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. Most of the researches based on the support are concerned with the frequent itemsets, but ignore the infrequent itemsets even if it is crucial. In this paper, we propose an efficient method WSFI-Mine(Weighted Support Frequent Itemsets Mine) to mine all frequent itemsets by one scan from the data stream. This method can discover the closed frequent itemsets using DCT(Data Stream Closed Pattern Tree). We compare the performance of our algorithm with DSM-FI and THUI-Mine, under different minimum supports. As results show that WSFI-Mine not only run significant faster, but also consume less memory.

User Clustering based on Genre Pattern for Efficient Collaborative Filtering System (효율적인 협업적 여과 시스템을 위한 장르 패턴 기반의 사용자 클러스터링)

  • Choi, Ja-Hyun;Ha, In-Ay;Hong, Myung-Duk;Jo, Geun-Sik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.171-172
    • /
    • 2011
  • 협업적 여과 시스템은 사용자에 대한 클러스터링을 구축한 후, 구축된 클러스터를 기반으로 사용자에게 영화를 추천한다. 하지만 사용자 클러스터링 구축에 많은 시간이 소요되고, 사용자가 평가한 영화가 피드백이 되었을 경우 재구축이 쉽지 않다. 본 논문에서는 사용자 클러스터링의 재구축을 용이하게 하기 위해 빈발패턴 네트워크를 이용하여 클러스터링을 구축하고, 이를 협업적 여과 시스템에 적용하여 영화를 추천한다. 구축된 클러스터를 통해 사용자 클러스터를 재구축시 소요되는 시간 비용을 줄이면서, 전통적인 협업적 여과 시스템과 유사한 성능의 추천이 가능하게 되었다.

  • PDF

Risk Communication on Social Media during the Sewol Ferry Disaster

  • Song, Minsun;Jung, Kyujin;Kim, Jiyoung Ydun;Park, Han Woo
    • Journal of Contemporary Eastern Asia
    • /
    • v.18 no.1
    • /
    • pp.189-216
    • /
    • 2019
  • The frequent occurrence of overwhelming disasters necessitates risk communication systems capable of operating effectively in disaster contexts. Few studies have examined risk communication networks during disasters through social networking services (SNS). This study therefore investigates the patterns of risk communication by comparing Korean and international networks based on the social amplification of risk communication in the context of the Sewol ferry disaster (SFD). In addition, differences in language use and patterns between Korean and international contexts are identified through a semantic analysis using KrKwick, NodeXL, and UCINET. The SFD refers to the sinking of the ferry while carrying 476 people, mostly secondary school students. The results for interpersonal risk communication reveal that the structure of the Korean risk communication network differed from that of the international network. The Korean network was more fragmented, and its clustering was more sparsely knitted based on the impact and physical proximity of the disaster. Semantic networks imply that the physical distance from the disaster affected the content of risk communication, as well as the network pattern.

Analysis of Wireless Network in Freight Container Terminal and Methods for Service Quality Enhancement (컨테이너 터미널의 무선 네트워크 분석과 서비스 품질 향상 방안)

  • Han, Seung-Ho;Park, Hyun-Sung;Kim, Jong-Deok;Kim, Yong-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.235-246
    • /
    • 2009
  • The number of industry wireless networks based on IEEE 802.11 WLAN technology deployed in large outdoor work sites, such as freight container terminal, is increasing these days. Wider service coverage, frequent movements of stations and high requirement on service reliability are main characteristics of these networks compared to the conventional IEEE 802.11 networks used in home, office and school. While the importance of these networks Bets higher, we can hardly find previous studies including concrete analysis on these networks based on actual experiments. We carried out several field experiments at a freight container terminal to analyze its IEEE 802.11 network and found out some problematic situations, such as over 50% retransmission rates and frequent disruption of communication link while a station is moving. We explain why these problematic situations happen and suggest some solutions, such as application of mesh technology, smart handoff based on location and movement pattern and adjustment of signal strength and channel allocation. Methods and tools used in the experiments are also detailed in the paper which may be helpful for similar future studies.

A Review of Machine Learning Algorithms for Fraud Detection in Credit Card Transaction

  • Lim, Kha Shing;Lee, Lam Hong;Sim, Yee-Wai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.31-40
    • /
    • 2021
  • The increasing number of credit card fraud cases has become a considerable problem since the past decades. This phenomenon is due to the expansion of new technologies, including the increased popularity and volume of online banking transactions and e-commerce. In order to address the problem of credit card fraud detection, a rule-based approach has been widely utilized to detect and guard against fraudulent activities. However, it requires huge computational power and high complexity in defining and building the rule base for pattern matching, in order to precisely identifying the fraud patterns. In addition, it does not come with intelligence and ability in predicting or analysing transaction data in looking for new fraud patterns and strategies. As such, Data Mining and Machine Learning algorithms are proposed to overcome the shortcomings in this paper. The aim of this paper is to highlight the important techniques and methodologies that are employed in fraud detection, while at the same time focusing on the existing literature. Methods such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), naïve Bayesian, k-Nearest Neighbour (k-NN), Decision Tree and Frequent Pattern Mining algorithms are reviewed and evaluated for their performance in detecting fraudulent transaction.

Building Energy Time Series Data Mining for Behavior Analytics and Forecasting Energy consumption

  • Balachander, K;Paulraj, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.1957-1980
    • /
    • 2021
  • The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information processing are commonly used to quantify gigantic building activity data steps to boost the activity efficiency of the building energy systems. Here, some smart data mining models are offered to measure, and predict the time series for energy in order to expose different ephemeral principles for using energy. Such considerations illustrate the use of machines in relation to time, such as day hour, time of day, week, month and year relationships within a family unit, which are key components in gathering and separating the effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is necessary to determine the multiple relations through the usage of different appliances from simultaneous information flows. In comparison, specific relations among interval-based instances where multiple appliances use continue for certain duration are difficult to determine. In order to resolve these difficulties, an unsupervised energy time-series data clustering and a frequent pattern mining study as well as a deep learning technique for estimating energy use were presented. A broad test using true data sets that are rich in smart meter data were conducted. The exact results of the appliance designs that were recognized by the proposed model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 99.61%, for 25%, 50%, and 75%, respectively.

Variable Geocasting based on Ad Hoc Networks (Ad Hoc 네트워크 기반의 가변 지오캐스팅)

  • Lee Cheol-Seung;Lee Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1401-1406
    • /
    • 2006
  • Mobile Ad-hoc networks have recently attracted a lot of attention in the research community as well as in industry. Although the previous research mainly focused on various of Ad-hoc in routing, we consider, in this paper, how to efficiently support applications such as variable Goocasting basd on Ad-hoc networks. The goal of a geocasting uotocol is deliver data packets to a group of nodes that are located within a specified geocasting region. Previous research that support geocast nice in mobilie computing based on Ad-hoc have the non-optimization problem of data delivery path, overhead by frequent reconstruction of the geocast tree, and service disruption problem. In this paper, we propose the mobility pattern based geocast technique using variable service range according to the nobility of destination node and resource reservation to solve this problem. The experimental results show that our proposed mechanism has improved performance of Connection & Network Overhead than previous research.