Biological sequences such as DNA and amino acid sequences typically contain a large number of items. They have contiguous sequences that ordinarily consist of more than hundreds of frequent items. In biological sequences analysis(BSA), a frequent contiguous sequence search is one of the most important operations. Many studies have been done for mining sequential patterns efficiently. Most of the existing methods for mining sequential patterns are based on the Apriori algorithm. In particular, the prefixSpan algorithm is one of the most efficient sequential pattern mining schemes based on the Apriori algorithm. However, since the algorithm expands the sequential patterns from frequent patterns with length-1, it is not suitable for biological datasets with long frequent contiguous sequences. In recent years, the MacosVSpan algorithm was proposed based on the idea of the prefixSpan algorithm to significantly reduce its recursive process. However, the algorithm is still inefficient for mining frequent contiguous sequences from long biological data sequences. In this paper, we propose an efficient method to mine maximal frequent contiguous sequences in large biological data sequences by constructing the spanning tree with a fixed length. To verify the superiority of the proposed method, we perform experiments in various environments. The experiments show that the proposed method is much more efficient than MacosVSpan in terms of retrieval performance.
본 논문에서는 데이타베이스를 단 한번 스캔하여 빈발 항목집합들을 생성할 수 있는 효율적인 알고리즘을 제안한다. 빈발 항목집합은 어떤 트랜잭션이 접근하는 항목 집합의 부분집합이다. 각 항목에 대하여 그 항목을 접근하는 트랜잭션들에 관한 정보를 가지고 있다면, 동일한 트랜잭션 식별자를 갖는 항목들만을 추출함으로써 빈발 항목집합들을 생성할 수 있다 본 논문에서 제안하는 방법은 한 번의 데이타베이스 스캔으로 각 항목마다 접근하는 트랜잭션 식별자를 저장할 수 있는 자료 구조를 생성하며, 동시에 해쉬 기법을 이용하여 2-빈발 항목집합들을 생성한다. 3-빈발 항목집합부터는 이 자료 구조와 각 항목에 대한 트랜잭션 식별자를 비교함으로써 간단히 빈발 항목집합들을 찾아낼 수 있다. 제안하는 알고리즘은 한 번의 데이타베이스 스캔만으로 빈발 항목집합들을 효율적으로 생성할 수 있다.
최근에는 데이터를 획득 및 처리하는 방법의 향상으로 인하여 연속적이고 실시간으로 발생되는 데이터를 처리하는 응용이 증가하고 있다. 그러한 응용에서 연관규칙을 추출하기 위해서는 새로운 방식을 사용하여 빈발항목집합을 찾아내야 한다. 기존의 빈발항목을 발견하는 방식에서는 전체 데이터베이스를 반복적으로 읽으면서 처리해야 한다. 그러나 실시간이고 연속적으로 발생하는 데이터를 처리하는 응용에서는 반복적으로 여러 번 데이터를 읽을 수 없기 때문에 일정 구간의 데이터를 한 번만 읽고 처리해야 한다. 따라서 본 논문에서는 입력되는 데이터 구간을 한 번만 읽고 최대 빈발항목 집합의 크기와 해당 빈발항목을 추정함으로써 필요한 연관규칙탐사를 가능하게 하는 빈발항목 추정 기법을 제안한다.
데이터 마이닝에서 활발히 연구되고 있는 주요 분야들 가운데 하나인 빈발 패턴 마이닝은 대규모의 데이터 집합 또는 데이터베이스로부터 숨겨진 유용한 패턴 정보를 추출하기 위한 방법이다. 또한 이 기법으로 얻을 수 있는 결과물을 통해 데이터베이스내의 다양하고 중요한 특징들을 더욱 손쉽게 자동적으로 분석할 수 있기 때문에 많은 응용영역에도 활발히 적용되고 있다. 하지만 이러한 데이터베이스로부터 단순히 사용자에 의해 설정된 최소 지지도 임계값만을 가지고 이를 만족하는 모든 패턴들을 추출하는 기존의 전통적인 빈발 패턴 마이닝 방식은 데이터베이스의 특성과 임계값 설정의 정도에 따라 극도로 많은 수의 결과 패턴을 생성하는 문제를 가지며, 이에 따른 시간 및 공간 자원의 낭비를 초래한다. 또한 과도하게 생성된 패턴에 대한 분석의 어려움 역시 심각한 문제가 된다. 기존의 빈발 패턴 마이닝 접근방법들이 직면한 이러한 문제를 해결하고자, 데이터베이스로부터 가능한 모든 빈발 패턴들을 마이닝하는 것이 아닌, 이들에 대한 대표 패턴들만은 선별적으로 추출할 수 있도록 하는 대표 패턴 마이닝의 개념과 다양한 관련 기법들이 제안되었다. 본 논문에서는 생성되는 각 패턴의 최대성 또는 폐쇄성을 고려하는 패턴 압축 기법들에 대한 특성들을 기술하고, 이에대한 비교 및 분석을 진행한다. 최대 빈발 패턴 혹은 닫힌 빈발 패턴들을 마이닝함으로써, 효과적인 패턴 압축이 가능하며, 더 적은 시공간 자원으로 마이닝 작업을 수행할 수 있다. 또한 압축된 패턴들은 필요시 다시 원래의 패턴 형태로 복구가 가능한 특징이 있으며, 특히 닫힌 패턴 접근 방법을 이용하면 패턴을 압축하고 다시 해제하는 과정에서 어떠한 정보의 손실도 일어나지 않는다. 본 논문에서는 같은 플랫폼 상에서 동일한 구현 수준의 알고리즘에 대해 실세계로부터 축적된 실 데이터셋들을 가지고 상기 기법들에 대한 성능평가를 진행함으로써, 각 기법이 패턴 생성, 수행 시간, 메모리 사용량과 같은 실제적인 마이닝 성능에 대해 어떠한 영향을 미치는지에 대한 심층적 분석결과를 보인다.
Mining association rules in web log files can be divided into two steps: 1) discovering frequent item sets in web data; 2) extracting association rules from the frequent item sets found in the previous step. This paper suggests an algorithm for finding frequent item sets efficiently The essence of the proposed algorithm is to transform transaction data files into matrix format. Our experimental results show that the suggested algorithm outperforms the Apriori algorithm, which is widely used to discover frequent item sets, in terms of scan frequency and execution time.
최근 들어 저장장치의 발전과 네트워크의 발달로 인하여 대용량의 데이터에 내재되어 있는 정보를 빠른시간 내에 처리하여 새로운 지식을 창출하려는 요구가 증가하고 있다. 연속적이고 빠르게 증가하는 데이터를 지칭하는 데이터 스트림에서 데이터 마이닝 기법을 이용하여 시간이 흐름에 따라 변하고, 무한적으로 증가하는 데이터 스트림에서의 빈발항목을 찾는 연구가 활발하게 진행되고 있다. 하지만 기존의 연구들은 시간의 흐름에 따른 빈발항목 탐색방법을 적절히 제시하지 못하고 있으며 단지 집계를 이용하여 빈발항목을 탐색하고 있다. 본 논문에서는 데이터 스트림에서 시간적 측면을 고려하여 상대적인 빈발항목을 탐색하기 위한 새로운 알고리즘으로 한정적인 메모리를 고려하여 빈발항목과 부분 빈발항목만을 저장하고 시간의 흐름에 따른 빈발항목의 갱신방법에 관하여 제안하였다. 논문에서 제안하는 알고리즘의 성능은 다양한 실험을 통해서 검증된다. 제안된 방법은 웹 코스웨어로 학습하는 학생들의 행동패턴을 시간대별로 파악하여 빈발항목 및 상대적인 빈발항목을 탐색함으로써 학생들의 학습효과 증진 및 지도 방향을 설정하는데 활용할 수 있다.
Objectives: This study was performed to examine the consumption patterns of convenience food at convenience stores, dietary habits, and perception as well as knowledge of food additives among university students. Methods: Subjects were 352 university students in Cheongju, Korea, and data was collected by a self-administered questionnaire. They were divided into three groups according to the frequency of consumption of convenience food at convenience stores: 79 rare (${\leq}1$ time/month), 89 moderate (2-4 times/month) and 184 frequent (${\geq}2$ times/week). Results: More subjects from the frequent consumption group lived apart from parents (p<0.001) and possessed more pocket money (p<0.01). Frequent consumption group consumed noodles, Kimbab, and sandwich & burger significantly more often (p<0.001, respectively) than others. In addition, frequent consumption of convenience foods at convenience stores was associated with frequent breakfast skipping (p<0.05), irregular meal time (p<0.01), snacking (p<0.05), and eating late night meal (p<0.001). More from the rare consumption group had heard about food additives previously compared to the frequent consumption group (79.7% vs. 63.6%, p<0.01). Frequent consumption group showed significantly higher score than did the rare consumption group for the following questions: monosodium glutamate is harmful to your health (p<0.05), food additives are necessary for food manufacturing (p<0.005), food additives need to be labeled on products (p<0.05), there is no food additive at all if labeled as no preservatives, no coloring, and no added sugar (p<0.05). There was a significant difference in degrees of choosing products with less food additives depending on the consumption pattern. Conclusions: Our results provided a better understanding of the factors associated with frequent consumption of convenience foods at convenience stores among university students and will be useful to develop a nutrition education program for those who are more prone to consume convenience foods.
Journal of Information Technology Applications and Management
/
제26권1호
/
pp.65-75
/
2019
As the use of semantic web based on XML increases in the field of data management, a lot of studies to extract useful information from the data stored in ontology have been tried based on association rule mining. Ontology data is advantageous in that data can be freely expressed because it has a flexible and scalable structure unlike a conventional database having a predefined structure. On the contrary, it is difficult to find frequent patterns in a uniformized analysis method. The goal of this study is to provide a basis for extracting useful knowledge from ontology by searching for frequently occurring subgraph patterns by applying transaction-based graph mining techniques to ontology schema graph data and instance graph data constituting ontology. In order to overcome the structural limitations of the existing ontology mining, the frequent pattern search methodology in this study uses the methodology used in graph mining to apply the frequent pattern in the graph data structure to the ontology by applying iterative node chunking method. Our suggested methodology will play an important role in knowledge extraction.
Mining interesting patterns from DNA sequences is one of the most challenging tasks in bioinformatics and computational biology. Maximal contiguous frequent patterns are preferable for expressing the function and structure of DNA sequences and hence can capture the common data characteristics among related sequences. Biologists are interested in finding frequent orderly arrangements of motifs that are responsible for similar expression of a group of genes. In order to reduce mining time and complexity, however, most existing sequence mining algorithms either focus on finding short DNA sequences or require explicit specification of sequence lengths in advance. The challenge is to find longer sequences without specifying sequence lengths in advance. In this paper, we propose an efficient approach to mining maximal contiguous frequent patterns from large DNA sequence datasets. The experimental results show that our proposed approach is memory-efficient and mines maximal contiguous frequent patterns within a reasonable time.
Gomez-Polo, Cristina;Gomez-Polo, Miguel;Martinez Vazquez de Parga, Juan Antonio;Celemin Vinuela, Alicia
The Journal of Advanced Prosthodontics
/
제7권6호
/
pp.413-422
/
2015
PURPOSE. To identify the most frequent natural tooth colors using the Easyshade Compact (Vita -Zahnfabrik) spectrophotometer on a sample of the Spanish population according to the 3D Master System. MATERIALS AND METHODS. The middle third of the facial surface of natural maxillary central incisors was measured with an Easyshade Compact spectrophotometer (Vita Zahnfabrik) in 1361 Caucasian Spanish participants aged between 16 and 89 years. Natural tooth color was recorded using the 3D Master System nomenclature. The program used for the present descriptive statistical analysis of the results was SAS 9.1.3. RESULTS. The results show that the most frequent dental color in the total sample studied is 3M1 (7.05%), followed by the intermediate shade 1M1.5 (6.91%) and 2L1.5 (6.02%). CONCLUSION. According to the research methodology used, and taking into account the limitations of this study, it can be proposed that the most frequent color among the Spanish population is 3M1; the most common lightness group is 2; the most frequent hue group according to the 3D Master System is M and the most frequent chroma group is 1.5.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.