• Title/Summary/Keyword: Frequency warping function

Search Result 8, Processing Time 0.019 seconds

Bilingual Voice Conversion Using Frequency Warping on Formant Space (포만트 공간에서의 주파수 변환을 이용한 이중 언어 음성 변환 연구)

  • Chae, Yi-Geun;Yun, Young-Sun;Jung, Jin Man;Eun, Seongbae
    • Phonetics and Speech Sciences
    • /
    • v.6 no.4
    • /
    • pp.133-139
    • /
    • 2014
  • This paper describes several approaches to transform a speaker's individuality to another's individuality using frequency warping between bilingual formant frequencies on different language environments. The proposed methods are simple and intuitive voice conversion algorithms that do not use training data between different languages. The approaches find the warping function from source speaker's frequency to target speaker's frequency on formant space. The formant space comprises four representative monophthongs for each language. The warping functions can be represented by piecewise linear equations, inverse matrix. The used features are pure frequency components including magnitudes, phases, and line spectral frequencies (LSF). The experiments show that the LSF-based voice conversion methods give better performance than other methods.

Vocal Tract Length Normalization for Speech Recognition (음성인식을 위한 성도 길이 정규화)

  • 지상문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1380-1386
    • /
    • 2003
  • Speech recognition performance is degraded by the variation in vocal tract length among speakers. In this paper, we have used a vocal tract length normalization method wherein the frequency axis of the short-time spectrum associated with a speaker's speech is scaled to minimize the effects of speaker's vocal tract length on the speech recognition performance In order to normalize vocal tract length, we tried several frequency warping functions such as linear and piece-wise linear function. Variable interval piece-wise linear warping function is proposed to effectively model the variation of frequency axis scale due to the large variation of vocal tract length. Experimental results on TIDIGITS connected digits showed the dramatic reduction of word error rates from 2.15% to 0.53% by the proposed vocal tract normalization.

Generalization of the Spreading Function and Weyl Symbol for Time-Frequency Analysis of Linear Time-Varying Systems

  • Iem, Byeong-gwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.628-632
    • /
    • 2001
  • We propose time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes. Obtained warping the narrowband Weyl symbol (WS) and spreading function (SF), the new TF tools are useful for analyzing LTV systems and random processes characterized by generalized frequency shifts, This new Weyl symbol (WS) is useful in wideband signal analysis. We also propose WS an tools for analyzing systems which produce dispersive frequency shifts on the signal. We obtain these generalized, frequency-shift covariant WS by warping conventional, narrowband WS. Using the new, generalized WS, we provide a formulation for the Weyl correspondence for linear systems with instantaneous of linear signal transformation as weighted superpositions of non-linear frequency shifts on the signal. Application examples in signal and detection demonstrate the advantages of our new results.

  • PDF

Wideband Time-Frequency Symbols and their Applications

  • Iem, Byeong-Gwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.563-567
    • /
    • 2001
  • We generalize the widebane P0-weyl symbol (P0WS) and the widebane spreading function (WSF) using the generalized warping function . The new generalized P0WS and WSF are useful for analyzing system and communication channels producing generalized time shifts. We also investigated the relationship between the affine Wey1 symbol(AWS) and the P0WS. By using specific warping functions, we derive new P0WS and WSF as analysis tools for systems and communication channels with non-linear group delary characteristics. The new P0WS preserves specific types of changes imposed on random processes. The new WSF provides a new interpretation of output of system and communication channel as weighted superpositions of non-linear time shifts on the input. It is compared to the conventional method obtaining output of system and communication channel as a convention integration of the input with the impulse response of the system and the communication channel. The convolution integration can be interpreted as weighted superpositions of liner time shifts on the input where the weight is the impulse response of the system and the communication channel. Application examples in analysis and detection demonstrate the advantages of our new results.

  • PDF

Dynamic Response Analysis of Composite H-Type Cross-Section Beams to Random Loads (랜덤하중이 가해진 복합재료 H-형 보의 동적 응답 해석)

  • Kim, Sung-Kyun;Song, Pong-Gun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.130-135
    • /
    • 2011
  • A study of the bending-extension-transverse shear coupled random response of the composite beams with thin-walled open sections subjected to various types of concentrated and distributed random excitations is dealt with in this paper. First of all, equations of motion of thin-walled composite H-type cross-section beams incorporating a number of nonclassical effects of transverse shear and primary and secondary warping, and anisotropy of constituent materials are derived. On the basis of derived equations of motion, analytical expressions for the displacement response of the composite beams are derived by using normal mode method combined with frequency response function method.

  • PDF

Hydroelastic Responses for a Ship Advancing in Waves (파랑중 전진하는 선박의 유탄성 응답)

  • 이호영;임춘규;정형배
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.16-21
    • /
    • 2003
  • The very large container ships have been built recently and those ships have very small structural rigidity compared with the other conventional ships. As a result, the destruction of ship hull is occurred by the springing including to warping phenomena due to encounter waves. In this study, the solutions of hydrodynamic coefficients are obtained by solving the three dimensional source distribution method and the forward speed Green function representing a translating and pulsating source potential for infinite water depth is used to calculating the integral equation. The vessel is longitudinally divided into various sections and the added mass, wave damping and wave exciting forces of each section is calculated by integrating the dynamic pressures over the mean wetted section surface. The equations for six degree freedom of motions is obtained for each section in the frequency domain and stiffness matrix is calculated by Euler beam theory. The computations are carried out for very large ship and effects of bending and torsional ridigity on the wave frequency and angle are investigated.

Formulation of New Hyperbolic Time-shift Covariant Time-frequency Symbols and Its Applications

  • Iem, Byeong-Gwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1E
    • /
    • pp.26-32
    • /
    • 2003
  • We propose new time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes showing hyperbolic TF structure. Obtained through hyperbolic warping the narrowband Weyl symbol (WS) and spreading function (SF) in frequency, the new TF tools are useful for analyzing LTV systems and random processes characterized by hyperbolic time shifts. This new TF symbol, called the hyperbolic WS, satisfies the hyperbolic time-shift covariance and scale covariance properties, and is useful in wideband signal analysis. Using the new, hyperbolic time-shift covariant WS and 2-D TF kernels, we provide a formulation for the hyperbolic time-shift covariant TF symbols, which are 2-D smoothed versions of the hyperbolic WS. We also propose a new interpretation of linear signal transformations as weighted superposition of hyperbolic time shifted and scale changed versions of the signal. Application examples in signal analysis and detection demonstrate the advantages of our new results.

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.