• 제목/요약/키워드: Frequency response function (FRF) analysis

검색결과 73건 처리시간 0.026초

다점 단순지지된 연속원통셸의 진동특성에 대한 실험적 고찰 (An Experimental Study on the Vibraton Characteristics of a Continuous Circular Cylindrical Shell with the Multi-simple Support)

  • 이영신;한창환;김근택;김현수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.568-574
    • /
    • 2000
  • This paper presents the vibration characteristics of a continuous circular cylindrical shell multi-simply supported at arbitrary axial positions for searching design parameters. In this modal test the impulse test method is applied to the excitation of experimental model. Natural frequencies are obtained from the peak points of frequency response function(FRF) through frequency analyzer and vibration behaviors are investigated. FE analysis is performed with ANSYS 5.5 to improve the reliability of experimental results. Their results are compared with experimental results. The effect of dynamic characteristics is analyzed for the number of support point on the shell.

  • PDF

하드디스크 드라이브에서의 소음 저감에 관한 연구 (A Study of Noise Reduction in Hard Disk Drive)

  • 곽주영;손진승;이행수;홍민표;고정석;조은형;좌성훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.579-585
    • /
    • 2001
  • This paper proposed a method of reducing a noise in hard disk drive. This method is performed through three parts of procedures. First procedure is sound-oriented experiment, which contains sound intensity techniques and measurements of sound pressure level and sound power. Second is vibration-oriented experiment, which contains FRF(Frequency Response Function) analysis and disk vibration reduction techniques. And the third is computer-oriented simulation, which contains modal analysis and force vibration analysis using ANSYS and sound radiation prediction using SYSNOISE. As these three parts can affect with each other, they should be considered and conducted simultaneously. Through this procedure sound power is measured 2.7 Bels in idle-spinning mode, which is the lowest noise level in the HDD industries.

  • PDF

Experimental study of extracting artificial boundary condition frequencies for dynamic model updating

  • Hou, Chuanchuan;Mao, Lei;Lu, Yong
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.247-261
    • /
    • 2017
  • In the field of dynamic measurement and structural damage identification, it is generally known that modal frequencies may be measured with higher accuracy than mode shapes. However, the number of natural frequencies within a measurable range is limited. Accessing additional forms of modal frequencies is thus desirable. The present study is concerned about the extraction of artificial boundary condition (ABC) frequencies from modal testing. The ABC frequencies correspond to the natural frequencies of the structure with a perturbed boundary condition, but they can be extracted from processing the frequency response functions (FRF) measured in a specific configuration from the structure in its existing state without the need of actually altering the physical support condition. This paper presents a comprehensive experimental investigation into the measurability of the ABC frequencies from physical experiments. It covers the testing procedure through modal testing, the data processing and data analysis requirements, and the FRF matrix operations leading to the extraction of the ABC frequencies. Specific sources of measurement errors and their effects on the accuracy of the extracted ABC frequencies are scrutinised. The extracted ABC frequencies are subsequently applied in the damage identification in beams by means of finite element model updating. Results demonstrate that it is possible to extract the first few ABC frequencies from the modal testing for a variety of artificial boundary conditions incorporating one or two virtual pin supports, and the inclusion of ABC frequencies enables the identification of structural damages without the need to involve the mode shape information.

구동계를 고려한 엔진 마운트의 다분야 통합 최적설계 (Multidisciplinary Design Optimization of Engine Mount with Considering Driveline)

  • 서명원;심문보;김문성;홍석길
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.209-217
    • /
    • 2002
  • This gaper discusses a multidisciplinary design optimization of the engine mounting system to improve the ride quality of a vehicle and to remove the possibility of the resonance between the powertrain system and vehicle systems. The driveline model attempts to support engine mount development by providing sufficient detail for design modification assessment in a modeling environment. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is both decoupling the roll mode ova powertrain and minimizing the vibration transmitted to the vehicle including the powertrain, simultaneously. By applying forced vibration analysis for vehicle systems and mode decouple analysis for the engine mount system, it is shown that improved optimization result is obtained.

디지탈 신호처리 기법을 이용한 맥동연소기의 소음원 규명에 관한 연구 (Noise Source Identification of a Pulse Combustion Burner Using Digital Signal Processing Techniques)

  • 김도원;조정길;이관수;오재응
    • 설비공학논문집
    • /
    • 제3권2호
    • /
    • pp.103-113
    • /
    • 1991
  • This paper presents a method for estimating the noise source contribution of a pulse combustion burner in a multiple input system where the input sources may be coherent each other. By coherence function method, it is found that the biggest part of the noise source in the pulse combustion burner is generated by the part of the combustion chamber. This analysis is modeled as three input / single output system because the noise generating mechanism of the pulse combustion burner is very complicated. The coherence function method is proved to be useful tool for the identification of noise source. The overall levels of the radiated source pressure by coherence function method are compared with those measured and calculated by the frequency response function approach. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of shield effect by FRF method indicates that significant reduction can be achieved in sound radiation if only transmission path generated by the part of combustion chamber is acoustically shield.

  • PDF

점탄성 물질로 코팅된 부정정 외팔보계의 동적 해석 (Dynamic analysis of an indeterminate system with cantilevers coated with viscoelastic material)

  • 심송;김광준
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.675-681
    • /
    • 1988
  • 본 연구에서는 표면감쇠처리되지 않은 구조물의 모우드특성을 아는 경우에 표 면감쇠처리에 의해서 결정되는 새로운 오무드변수를 계산하는 한 방법을 제시하고자 한다.즉, 실험적으로 측정된 점탄성물질의 동특성으로부터 표면감쇠처리되기 전의 모우드를 이용하여 표면감쇠처리된 구조물의 모우드감쇠와 고유진동수 및 주파수응답 함수를 계산한다. 이 과정을 Fig.1에 보여진, 표면감쇠처리된 네 개의 보와 하나의 집중질량으로 구성된 부정정계 구조물에 적용 서술하고자 한다.

최적구조변경법에 의한 자동차 엔진 블록의 중량최소화에 관한 연구 (A Study on the Weight Minimization of an Automobile Engine Block by the Optimum Structural Modification)

  • 김영군;박석주;김성우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.326-332
    • /
    • 1997
  • Recently to develop an automobile with better prosperities, many researches and investments have been executed. In this paper we intend to improve the automobile properties by reducing the weights of the engine without changing the dynamic characteristics. At first we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the engine model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. The weight minimization is performed by the Sensitivities of the Natural frequencies of the engine block. To decrease the engine weight ideally, the parts of the sensitivity zero are to be cut mainly, and the changing quantity of natural frequency by the cut is to be recovered by the structural modification for the parts with the good sensitivity. But, as actually the mathematical solution for the homogeneous problem(i.e. 0 object function) do not exist, we hereby redesign the block with much thinner thickness and recover the natural frequencies and natural modes to original structure's by the sensitivity analysis. And the Frequency Response Functions(FRF) are to be observed for the interesting points. In this analysis, the original thickness of the engine model has 8 mm of thickness, and the thickness redesigned is 5 mm and 6 mm. And we are to try to recover the 1, 2, 4, and 5 lower natural frequencies interested.

  • PDF

Hybrid machine learning with mode shape assessment for damage identification of plates

  • Pei Yi Siow;Zhi Chao Ong;Shin Yee Khoo;Kok-Sing Lim;Bee Teng Chew
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.485-500
    • /
    • 2023
  • Machine learning-based structural health monitoring (ML-based SHM) methods are researched extensively in the recent decade due to the availability of advanced information and sensing technology. ML methods are well-known for their pattern recognition capability for complex problems. However, the main obstacle of ML-based SHM is that it often requires pre-collected historical data for model training. In most actual scenarios, damage presence can be detected using the unsupervised learning method through anomaly detection, but to further identify the damage types would require prior knowledge or historical events as references. This creates the cold-start problem, especially for new and unobserved structures. Modal-based methods identify damages based on the changes in the structural global properties but often require dense measurements for accurate results. Therefore, a two-stage hybrid modal-machine learning damage detection scheme is proposed. The first stage detects damage presence using Principal Component Analysis-Frequency Response Function (PCA-FRF) in an unsupervised manner, whereas the second stage further identifies the damage. To solve the cold-start problem, mode shape assessment using the first mode is initiated when no trained model is available yet in the second stage. The damage identified by the modal-based method would be stored for future training. This work highlights the performance of the scheme in alleviating the cold-start issue as it transitions through different phases, starting from zero damage sample available. Results showed that single and multiple damages can be identified at an acceptable accuracy level even when training samples are limited.

Rolling Tire 모드해석을 위한 회전주기성분제거에 대한 연구 (The Study of harmonic peaks removal for modal analysis of Rolling tire)

  • 최정현;이상주;박주배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.409-412
    • /
    • 2005
  • Just as the vibration modes of a beam are dependent on its end constraints or boundary conditions. Vibration modes of a tire are dependent on its patch and spindle constraints. This dependence is key to understanding the dynamic properties of a tire and is apparent in various analytical and experimental investigations in the literature. One of the main task in a modal analysis is the measurement of the Frequency Response Function (FRFs). Because all the subsequent analysis is based on these FRFs, their quality is critically important in obtaining accurate modal parameter estimates. In rotating systems, FRFs are frequently contaminated by harmonic peaks related to such factors as imbalance, misalignment. This harmonic peaks appear in the FRFs as sharp spikes, which can be erroneously treated in modal curve-fitting procedures as structural modes. The harmonic peaks removal method is demonstrated by application to modal analysis on rotating tires. The results show substantial improvement in FRF quality.

  • PDF

모형개선을 위한 감쇠행렬 추정법의 비교 (Comparison of Damping Matrix Estimation Methods for Model Updating)

  • 이건명;주영호;박문수
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.923-930
    • /
    • 2010
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping, and in the second stage, damping matrices are estimated with the mass and stiffness matrices fixed. Three methods to estimate damping matrices for this purpose are proposed in this paper. The methods include one for proportional damping systems and two for non-proportional damping systems. Method 1 utilizes orthogonality of normal modes and estimates damping matrices using the modal parameters extracted from the measured responses. Method 2 estimates damping matrices from impedance matrices which are the inverse of FRF matrices. Method 3 estimates damping using the equation which relates a damping matrix to the difference between the analytical and measured FRFs. The characteristics of the three methods are investigated by applying them to simulated discrete system data and experimental cantilever beam data.